Suppr超能文献

三种三元脂质双层混合物的比较:FRET 和 ESR 揭示纳米区。

Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.

出版信息

Biophys J. 2010 Nov 17;99(10):3309-18. doi: 10.1016/j.bpj.2010.09.064.

Abstract

Phase diagrams of ternary lipid mixtures containing cholesterol have provided valuable insight into cell membrane behaviors, especially by describing regions of coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. Fluorescence microscopy imaging of giant unilamellar vesicles has greatly assisted the determination of phase behavior in these systems. However, the requirement for optically resolved Ld + Lo domains can lead to the incorrect inference that in lipid-only mixtures, Ld + Lo domain coexistence generally shows macroscopic domains. Here we show this inference is incorrect for the low melting temperature phosphatidylcholines abundant in mammalian plasma membranes. By use of high compositional resolution Förster resonance energy transfer measurements, together with electron spin resonance data and spectral simulation, we find that ternary mixtures of DSPC and cholesterol together with either POPC or SOPC, do indeed have regions of Ld + Lo coexistence. However, phase domains are much smaller than the optical resolution limit, likely on the order of the Förster distance for energy transfer (R(0), ∼2-8 nm).

摘要

含有胆固醇的三元脂质混合物的相图为细胞膜行为提供了有价值的见解,特别是通过描述共存的液体无序(Ld)和液体有序(Lo)相区域。荧光显微镜成像的巨大单层囊泡极大地辅助了这些系统中相行为的确定。然而,对于光学上可分辨的 Ld + Lo 结构域的要求可能导致不正确的推断,即在仅含脂质的混合物中,Ld + Lo 结构域共存通常表现为宏观结构域。在这里,我们表明对于哺乳动物质膜中丰富的低熔点磷脂酰胆碱来说,这种推断是不正确的。通过使用高组成分辨率的Förster 共振能量转移测量,以及电子自旋共振数据和光谱模拟,我们发现 DSPC 和胆固醇与 POPC 或 SOPC 的三元混合物确实存在 Ld + Lo 共存的区域。然而,相畴比光学分辨率极限小得多,可能在能量转移的Förster 距离(R(0),约 2-8nm)的量级上。

相似文献

1
Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.
Biophys J. 2010 Nov 17;99(10):3309-18. doi: 10.1016/j.bpj.2010.09.064.
2
Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
Biochim Biophys Acta. 2016 Jan;1858(1):153-61. doi: 10.1016/j.bbamem.2015.10.016. Epub 2015 Oct 23.
5
Phase studies of model biomembranes: macroscopic coexistence of Lalpha+Lbeta, with light-induced coexistence of Lalpha+Lo Phases.
Biochim Biophys Acta. 2007 Nov;1768(11):2777-86. doi: 10.1016/j.bbamem.2007.07.009. Epub 2007 Jul 25.
6
On the small size of liquid-disordered + liquid-ordered nanodomains.
Biochim Biophys Acta Biomembr. 2021 Oct 1;1863(10):183685. doi: 10.1016/j.bbamem.2021.183685. Epub 2021 Jun 25.
7
FRET Detects the Size of Nanodomains for Coexisting Liquid-Disordered and Liquid-Ordered Phases.
Biophys J. 2018 Apr 24;114(8):1921-1935. doi: 10.1016/j.bpj.2018.03.014.
8
Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study.
Eur Biophys J. 2003 Jul;32(4):381-91. doi: 10.1007/s00249-003-0281-3. Epub 2003 Mar 6.
9
Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes.
Biochim Biophys Acta Biomembr. 2019 Feb 1;1861(2):478-485. doi: 10.1016/j.bbamem.2018.11.010. Epub 2018 Dec 5.
10
Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts.
Biophys J. 2003 Oct;85(4):2406-16. doi: 10.1016/S0006-3495(03)74664-5.

引用本文的文献

1
The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes.
Membranes (Basel). 2025 Mar 3;15(3):79. doi: 10.3390/membranes15030079.
2
ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes.
Nat Commun. 2025 Mar 21;16(1):2814. doi: 10.1038/s41467-025-58142-5.
3
Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?
Membranes (Basel). 2025 Jan 1;15(1):6. doi: 10.3390/membranes15010006.
4
Toxic Effects of Butanol in the Plane of the Cell Membrane.
Langmuir. 2025 Jan 21;41(2):1281-1296. doi: 10.1021/acs.langmuir.4c03677. Epub 2025 Jan 8.
5
Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes.
Curr Issues Mol Biol. 2024 Sep 26;46(10):10829-10845. doi: 10.3390/cimb46100643.
6
Antimicrobial Peptides Increase Line Tension in Raft-Forming Lipid Membranes.
J Am Chem Soc. 2024 Jul 31;146(30):20891-20903. doi: 10.1021/jacs.4c05377. Epub 2024 Jul 17.
7
Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach.
Biophys J. 2024 Sep 3;123(17):2877-2891. doi: 10.1016/j.bpj.2024.04.029. Epub 2024 Apr 30.
8
Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease.
Annu Rev Biophys. 2024 Jul;53(1):455-486. doi: 10.1146/annurev-biophys-062823-023436. Epub 2024 Jun 28.
9
Secondary Ion Mass Spectrometry of Single Giant Unilamellar Vesicles Reveals Compositional Variability.
J Am Chem Soc. 2023 Dec 20;145(50):27521-27530. doi: 10.1021/jacs.3c09039. Epub 2023 Dec 6.
10
Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity.
PNAS Nexus. 2023 Aug 3;2(8):pgad258. doi: 10.1093/pnasnexus/pgad258. eCollection 2023 Aug.

本文引用的文献

1
Phase separation in biological membranes: integration of theory and experiment.
Annu Rev Biophys. 2010;39:207-26. doi: 10.1146/annurev.biophys.093008.131238.
2
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
3
Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams.
Biochim Biophys Acta. 2009 Oct;1788(10):2114-23. doi: 10.1016/j.bbamem.2009.08.004. Epub 2009 Aug 21.
4
Determination of tie-line fields for coexisting lipid phases: an ESR study.
J Phys Chem B. 2009 Mar 26;113(12):3957-71. doi: 10.1021/jp808412x.
5
Effects of cholesterol and unsaturated DOPC lipid on chain packing of saturated gel-phase DPPC bilayers.
Gen Physiol Biophys. 2009 Jun;28(2):126-39. doi: 10.4149/gpb_2009_02_126.
6
Membrane-mediated interactions measured using membrane domains.
Biophys J. 2009 Jun 17;96(12):4906-15. doi: 10.1016/j.bpj.2009.03.050.
7
Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures.
Biochim Biophys Acta. 2009 Jan;1788(1):47-52. doi: 10.1016/j.bbamem.2008.08.014. Epub 2008 Sep 5.
8
Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer.
Biophys J. 2008 Oct;95(8):3861-71. doi: 10.1529/biophysj.108.133744. Epub 2008 Jul 18.
9
Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points.
Biophys J. 2008 Jul;95(1):236-46. doi: 10.1529/biophysj.107.128421. Epub 2008 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验