Center for Molecular Protein Science, Lund University, Lund, Sweden.
Biophys J. 2010 Nov 17;99(10):3365-73. doi: 10.1016/j.bpj.2010.08.078.
Understanding the role of electrostatics in protein stability requires knowledge of these interactions in both the folded and unfolded states. Electrostatic interactions can be probed experimentally by characterizing ionization equilibria of titrating groups, parameterized as pK(a) values. However, pK(a) values of the unfolded state are rarely accessible under native conditions, where the unfolded state has a very low population. Here, we report pK(a) values under nondenaturing conditions for two unfolded fragments of the protein G B1 domain that mimic the unfolded state of the intact protein. pK(a) values were determined for carboxyl groups by monitoring their pH-dependent (13)C chemical shifts. Monte Carlo simulations using a Gaussian chain model provide corrections for changes in electrostatic interactions that arise from fragmentation of the protein. Most pK(a) values for the unfolded state agree well with model values, but some residues show significant perturbations that can be rationalized by local electrostatic interactions. The pH-dependent stability was calculated from the experimental pK(a) values of the folded and unfolded states and compared to experimental stability data. The use of experimental pK(a) values for the unfolded state results in significantly improved agreement with experimental data, as compared to calculations based on model data alone.
要了解静电在蛋白质稳定性中的作用,需要了解折叠态和未折叠态下这些相互作用。静电相互作用可以通过研究滴定基团的电离平衡来实验探测,这些基团被参数化为 pK(a) 值。然而,在天然条件下,未折叠态的 pK(a) 值很少能够获得,因为未折叠态的存在几率非常低。在这里,我们报道了两个模拟完整蛋白质未折叠态的蛋白质 G B1 结构域的未折叠片段在非变性条件下的 pK(a) 值。通过监测羧基的 pH 依赖性 (13)C 化学位移来确定 pK(a) 值。使用高斯链模型的蒙特卡罗模拟为由于蛋白质的片段化而产生的静电相互作用的变化提供了校正。大多数未折叠态的 pK(a) 值与模型值吻合良好,但有些残基显示出明显的扰动,这些扰动可以通过局部静电相互作用来解释。从折叠态和未折叠态的实验 pK(a) 值计算了 pH 依赖性稳定性,并与实验稳定性数据进行了比较。与仅基于模型数据的计算相比,使用未折叠态的实验 pK(a) 值可显著提高与实验数据的一致性。