Lindman Stina, Linse Sara, Mulder Frans A A, André Ingemar
Department of Biophysical Chemistry, Lund University, Chemical Center, SE-22100 Lund, Sweden.
Biophys J. 2007 Jan 1;92(1):257-66. doi: 10.1529/biophysj.106.088682. Epub 2006 Oct 13.
Determination of pK(a) values of titrating residues in proteins provides a direct means of studying electrostatic coupling as well as pH-dependent stability. The B1 domain of protein G provides an excellent model system for such investigations. In this work, we analyze the observed pK(a) values of all carboxyl groups in a variant of PGB1 (T2Q, N8D, N37D) at low and high ionic strength as determined using (1)H-(13)C heteronuclear NMR in a structural context. The pK(a) values are used to calculate the pH-dependent stability in low and high salt and to investigate electrostatic coupling in the system. The observed pK(a) values can explain the pH dependence of protein stability but require pK(a) shifts relative to model values in the unfolded state, consistent with persistent residual structure in the denatured state. In particular, we find that most of the deviations from the expected random coil values can be explained by a significantly upshifted pK(a) value. We show also that (13)C backbone carbonyl data can be used to study electrostatic coupling in proteins and provide specific information on hydrogen bonding and electrostatic potential at nontitrating sites.
测定蛋白质中滴定残基的pK(a)值为研究静电耦合以及pH依赖性稳定性提供了一种直接方法。蛋白质G的B1结构域为这类研究提供了一个出色的模型系统。在这项工作中,我们分析了在低离子强度和高离子强度下,通过(1)H-(13)C异核核磁共振在结构背景下测定的PGB1变体(T2Q、N8D、N37D)中所有羧基的观测pK(a)值。这些pK(a)值用于计算低盐和高盐条件下的pH依赖性稳定性,并研究该系统中的静电耦合。观测到的pK(a)值可以解释蛋白质稳定性的pH依赖性,但相对于未折叠状态下的模型值需要有pK(a)位移,这与变性状态下的持续残余结构一致。特别是,我们发现与预期的无规卷曲值的大多数偏差可以通过显著上移的pK(a)值来解释。我们还表明,(13)C主链羰基数据可用于研究蛋白质中的静电耦合,并提供有关非滴定位点氢键和静电势的具体信息。