Suppr超能文献

一种PGB1变体侧链羧基的pK(a)值解释了盐和pH依赖性稳定性。

pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability.

作者信息

Lindman Stina, Linse Sara, Mulder Frans A A, André Ingemar

机构信息

Department of Biophysical Chemistry, Lund University, Chemical Center, SE-22100 Lund, Sweden.

出版信息

Biophys J. 2007 Jan 1;92(1):257-66. doi: 10.1529/biophysj.106.088682. Epub 2006 Oct 13.

Abstract

Determination of pK(a) values of titrating residues in proteins provides a direct means of studying electrostatic coupling as well as pH-dependent stability. The B1 domain of protein G provides an excellent model system for such investigations. In this work, we analyze the observed pK(a) values of all carboxyl groups in a variant of PGB1 (T2Q, N8D, N37D) at low and high ionic strength as determined using (1)H-(13)C heteronuclear NMR in a structural context. The pK(a) values are used to calculate the pH-dependent stability in low and high salt and to investigate electrostatic coupling in the system. The observed pK(a) values can explain the pH dependence of protein stability but require pK(a) shifts relative to model values in the unfolded state, consistent with persistent residual structure in the denatured state. In particular, we find that most of the deviations from the expected random coil values can be explained by a significantly upshifted pK(a) value. We show also that (13)C backbone carbonyl data can be used to study electrostatic coupling in proteins and provide specific information on hydrogen bonding and electrostatic potential at nontitrating sites.

摘要

测定蛋白质中滴定残基的pK(a)值为研究静电耦合以及pH依赖性稳定性提供了一种直接方法。蛋白质G的B1结构域为这类研究提供了一个出色的模型系统。在这项工作中,我们分析了在低离子强度和高离子强度下,通过(1)H-(13)C异核核磁共振在结构背景下测定的PGB1变体(T2Q、N8D、N37D)中所有羧基的观测pK(a)值。这些pK(a)值用于计算低盐和高盐条件下的pH依赖性稳定性,并研究该系统中的静电耦合。观测到的pK(a)值可以解释蛋白质稳定性的pH依赖性,但相对于未折叠状态下的模型值需要有pK(a)位移,这与变性状态下的持续残余结构一致。特别是,我们发现与预期的无规卷曲值的大多数偏差可以通过显著上移的pK(a)值来解释。我们还表明,(13)C主链羰基数据可用于研究蛋白质中的静电耦合,并提供有关非滴定位点氢键和静电势的具体信息。

相似文献

1
pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability.
Biophys J. 2007 Jan 1;92(1):257-66. doi: 10.1529/biophysj.106.088682. Epub 2006 Oct 13.
2
Carboxyl pK(a) values, ion pairs, hydrogen bonding, and the pH-dependence of folding the hyperthermophile proteins Sac7d and Sso7d.
J Mol Biol. 2007 Sep 28;372(4):992-1008. doi: 10.1016/j.jmb.2007.06.089. Epub 2007 Jul 10.
3
pK(a) values for the unfolded state under native conditions explain the pH-dependent stability of PGB1.
Biophys J. 2010 Nov 17;99(10):3365-73. doi: 10.1016/j.bpj.2010.08.078.
4
Salting the charged surface: pH and salt dependence of protein G B1 stability.
Biophys J. 2006 Apr 15;90(8):2911-21. doi: 10.1529/biophysj.105.071050. Epub 2006 Jan 27.
6
Protein GB1 folding and assembly from structural elements.
Int J Mol Sci. 2009 Apr 8;10(4):1552-1566. doi: 10.3390/ijms10041552.
7
pK values of histidine residues in ribonuclease Sa: effect of salt and net charge.
J Mol Biol. 2003 Jan 31;325(5):1093-105. doi: 10.1016/s0022-2836(02)01274-3.
9
Site-specific contributions to the pH dependence of protein stability.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4545-50. doi: 10.1073/pnas.0736600100. Epub 2003 Apr 1.
10
Carboxyl pK(a) values and acid denaturation of BBL.
J Mol Biol. 2010 Oct 22;403(2):313-27. doi: 10.1016/j.jmb.2010.08.052. Epub 2010 Sep 15.

引用本文的文献

3
The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation).
Front Mol Med. 2021 Nov 16;1:777088. doi: 10.3389/fmmed.2021.777088. eCollection 2021.
4
Energetics and dynamics of the proton shuttle of carbonic anhydrase II.
Cell Mol Life Sci. 2023 Sep 9;80(10):286. doi: 10.1007/s00018-023-04936-z.
6
Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives.
Mol Biotechnol. 2019 Aug;61(8):579-601. doi: 10.1007/s12033-019-00187-1.
7
Experimental pK Value Determination of All Ionizable Groups of a Hyperstable Protein.
Chembiochem. 2019 Apr 1;20(7):922-930. doi: 10.1002/cbic.201800628. Epub 2019 Feb 11.
8
Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation.
Chem Rev. 2018 Feb 28;118(4):1691-1741. doi: 10.1021/acs.chemrev.7b00305. Epub 2018 Jan 10.
9
Active-Site pKa Determination for Photoactive Yellow Protein Rationalizes Slow Ground-State Recovery.
Biophys J. 2017 May 23;112(10):2109-2116. doi: 10.1016/j.bpj.2017.04.008.

本文引用的文献

1
Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. 1990.
J Magn Reson. 2011 Dec;213(2):423-41. doi: 10.1016/j.jmr.2011.09.004.
3
Salting the charged surface: pH and salt dependence of protein G B1 stability.
Biophys J. 2006 Apr 15;90(8):2911-21. doi: 10.1529/biophysj.105.071050. Epub 2006 Jan 27.
6
On the charge regulation of proteins.
Biochemistry. 2005 Apr 19;44(15):5722-7. doi: 10.1021/bi047630o.
7
Polymer models of protein stability, folding, and interactions.
Biochemistry. 2004 Mar 2;43(8):2141-54. doi: 10.1021/bi036269n.
8
Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals?
Cell Mol Life Sci. 2003 Jul;60(7):1281-95. doi: 10.1007/s00018-003-2287-5.
9
Site-specific contributions to the pH dependence of protein stability.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4545-50. doi: 10.1073/pnas.0736600100. Epub 2003 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验