Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
Biophys J. 2010 Nov 17;99(10):3385-93. doi: 10.1016/j.bpj.2010.09.001.
Many pathogenic bacteria are able to survive attack by the host's immune system because of antioxidant systems that mitigate the effects of reactive oxygen species. Dps is a hollow 12-subunit protein nanocage that prevents oxidative damage by oxidizing and sequestering intracellular Fe(2+); the resulting Fe(3+) forms an iron oxyhydroxide nanoparticle in the cage interior. Charged sites on the protein nanocage create an electrostatic gradient that guides ions through well-defined pores that connect the cage interior with the surrounding solution and toward nucleation sites on the cage interior. In this study, we use all-atom molecular dynamics to simulate the motion of simple cations into the dodecameric cage formed by the Dps protein from Listeria monocytogenes. Ion trajectories are analyzed by using a novel, to our knowledge, genetic algorithm to determine the temporal sequence of ion-protein interactions. Ions enter Dps through well-defined pores at the ferritinlike C(3) axes, with negatively-charged residues on the outside of the cage forming a fairly well-defined entrance pathway. This method of trajectory analysis may be broadly applicable in situations where the spatial localization of ions or other small molecules is electrostatically driven by a biomolecule.
许多病原菌能够在宿主免疫系统的攻击下存活下来,这要归功于抗氧化系统,该系统减轻了活性氧的影响。Dps 是一种中空的 12 亚基蛋白纳米笼,通过氧化和隔离细胞内的 Fe(2+)来防止氧化损伤;由此产生的 Fe(3+)在笼内形成铁氧氢氧化物纳米颗粒。蛋白纳米笼上的带电位点形成静电梯度,引导离子通过与笼内相通的明确定义的孔,朝着笼内的成核位点移动。在这项研究中,我们使用全原子分子动力学模拟了来自李斯特菌的 Dps 蛋白形成的十二聚体笼内简单阳离子的运动。通过使用我们所知的一种新的遗传算法来分析离子轨迹,以确定离子-蛋白相互作用的时间顺序。离子通过 Ferritin 样 C(3)轴上的明确定义的孔进入 Dps,笼外带负电荷的残基形成相当明确的入口途径。这种轨迹分析方法可能广泛适用于离子或其他小分子由于生物分子的静电作用而被空间定位的情况。