Suppr超能文献

鉴定脑胶质瘤源性肿瘤干细胞系中 CD133(-)/端粒酶(low)的祖细胞。

Identification of CD133(-)/telomerase(low) progenitor cells in glioblastoma-derived cancer stem cell lines.

机构信息

Department of Hematology and Oncology, University of Regensburg, Germany.

出版信息

Cell Mol Neurobiol. 2011 Apr;31(3):337-43. doi: 10.1007/s10571-010-9627-4. Epub 2010 Nov 17.

Abstract

Glioblastoma multiforme (GBM) is paradigmatic for the investigation of cancer stem cells (CSC) in solid tumors. The CSC hypothesis implies that tumors are maintained by a rare subpopulation of CSC that gives rise to rapidly proliferating progenitor cells. Although the presence of progenitor cells is crucial for the CSC hypothesis, progenitor cells derived from GBM CSC are yet uncharacterized. We analyzed human CD133(+) CSC lines that were directly derived from CD133(+) primary astrocytic GBM. In these CSC lines, CD133(+)/telomerase(high) CSC give rise to non-tumorigenic, CD133(-)/telomerase(low) progenitor cells. The proliferation of the progenitor cell population results in significant telomere shortening as compared to the CD133(+) compartment comprising CSC. The average difference in telomere length as determined by a modified multi-color flow fluorescent in situ hybridization was 320 bp corresponding to 4-8 cell divisions. Taken together, we demonstrate that CD133(+) primary astrocytic GBM comprise proliferating, CD133(-)/telomerase(low) progenitor cell population characterized by low telomerase activity and shortened telomeres as compared to CSC.

摘要

多形性胶质母细胞瘤(GBM)是研究实体瘤中癌症干细胞(CSC)的典型范例。CSC 假说表明,肿瘤由一小部分 CSC 维持,这些 CSC 产生快速增殖的祖细胞。尽管祖细胞的存在对 CSC 假说至关重要,但源自 GBM CSC 的祖细胞尚未得到表征。我们分析了直接源自 CD133(+)原发性星形胶质细胞瘤的人 CD133(+) CSC 系。在这些 CSC 系中,CD133(+)/端粒酶(高)CSC 产生非致瘤性的、CD133(-)/端粒酶(低)祖细胞。与包含 CSC 的 CD133(+) 区室相比,祖细胞群体的增殖导致显著的端粒缩短。通过改良的多色流式荧光原位杂交确定的端粒长度平均差异为 320bp,相当于 4-8 个细胞分裂。总之,我们证明 CD133(+)原发性星形胶质细胞瘤包含增殖性的、CD133(-)/端粒酶(低)祖细胞群体,其特征是与 CSC 相比端粒酶活性低,端粒缩短。

相似文献

1
Identification of CD133(-)/telomerase(low) progenitor cells in glioblastoma-derived cancer stem cell lines.
Cell Mol Neurobiol. 2011 Apr;31(3):337-43. doi: 10.1007/s10571-010-9627-4. Epub 2010 Nov 17.
3
Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin.
Cancer Res. 2010 Mar 1;70(5):2030-40. doi: 10.1158/0008-5472.CAN-09-1707. Epub 2010 Feb 9.
5
Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors.
J Neurooncol. 2009 Aug;94(1):1-19. doi: 10.1007/s11060-009-9919-z. Epub 2009 May 26.
6
CD133 is essential for glioblastoma stem cell maintenance.
Stem Cells. 2013 May;31(5):857-69. doi: 10.1002/stem.1317.
7
Heterogeneous phenotype of human glioblastoma: in vitro study.
Cell Biochem Funct. 2014 Mar;32(2):164-76. doi: 10.1002/cbf.2988. Epub 2013 Jul 8.
10
Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53.
Cell Death Dis. 2015 Nov 5;6(11):e1964. doi: 10.1038/cddis.2015.313.

引用本文的文献

1
Telomerase and Pluripotency Factors Jointly Regulate Stemness in Pancreatic Cancer Stem Cells.
Cancers (Basel). 2021 Jun 23;13(13):3145. doi: 10.3390/cancers13133145.
2
Telomerase and CD4 T Cell Immunity in Cancer.
Cancers (Basel). 2020 Jun 25;12(6):1687. doi: 10.3390/cancers12061687.
3
ALCAM stromal cells: role in giant cell tumor of bone progression.
Cell Death Dis. 2018 Feb 20;9(3):299. doi: 10.1038/s41419-018-0361-z.
4
Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.
Oncotarget. 2017 May 23;8(50):86987-87001. doi: 10.18632/oncotarget.18115. eCollection 2017 Oct 20.
5
Isolation of cancer progenitor cells from cancer stem cells in gastric cancer.
Mol Med Rep. 2017 Jun;15(6):3637-3643. doi: 10.3892/mmr.2017.6423. Epub 2017 Apr 3.
6
A second chance for telomerase reverse transcriptase in anticancer immunotherapy.
Nat Rev Clin Oncol. 2017 Feb;14(2):115-128. doi: 10.1038/nrclinonc.2016.67. Epub 2016 Jun 1.
7
Hedgehog signaling sensitizes glioma stem cells to endogenous nano-irradiation.
Oncotarget. 2014 Jul 30;5(14):5483-93. doi: 10.18632/oncotarget.2123.
8
Impairment of glioma stem cell survival and growth by a novel inhibitor for Survivin-Ran protein complex.
Clin Cancer Res. 2013 Feb 1;19(3):631-42. doi: 10.1158/1078-0432.CCR-12-0647. Epub 2012 Dec 18.
10
Cancer-initiating enriched cell lines from human glioblastoma: preparing for drug discovery assays.
Stem Cell Rev Rep. 2012 Mar;8(1):288-98. doi: 10.1007/s12015-011-9283-1.

本文引用的文献

1
A hierarchy of self-renewing tumor-initiating cell types in glioblastoma.
Cancer Cell. 2010 Apr 13;17(4):362-75. doi: 10.1016/j.ccr.2009.12.049.
2
Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin.
Cancer Res. 2010 Mar 1;70(5):2030-40. doi: 10.1158/0008-5472.CAN-09-1707. Epub 2010 Feb 9.
4
Telomere diseases.
N Engl J Med. 2009 Dec 10;361(24):2353-65. doi: 10.1056/NEJMra0903373.
5
SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma.
Cell Stem Cell. 2009 May 8;4(5):440-52. doi: 10.1016/j.stem.2009.03.003.
6
Potency and fate specification in CNS stem cell populations in vitro.
Cell Stem Cell. 2008 Dec 4;3(6):670-80. doi: 10.1016/j.stem.2008.09.012.
7
CD133 expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors.
Brain Pathol. 2008 Jul;18(3):370-7. doi: 10.1111/j.1750-3639.2008.00130.x. Epub 2008 Mar 26.
8
Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria.
Oncogene. 2008 May 1;27(20):2897-909. doi: 10.1038/sj.onc.1210949. Epub 2007 Nov 26.
9
Ectopic telomerase expression inhibits neuronal differentiation of NT2 neural progenitor cells.
Neurosci Lett. 2007 Jun 27;421(2):168-72. doi: 10.1016/j.neulet.2007.03.079. Epub 2007 Jun 2.
10
Concise review: Telomere biology in normal and leukemic hematopoietic stem cells.
Stem Cells. 2007 Aug;25(8):1853-61. doi: 10.1634/stemcells.2007-0057. Epub 2007 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验