Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, USA.
Trials. 2010 Nov 17;11:108. doi: 10.1186/1745-6215-11-108.
There is currently much interest in pharmacogenetics: determining variation in genes that regulate drug effects, with a particular emphasis on improving drug safety and efficacy. The ability to determine such variation motivates the application of personalized drug therapies that utilize a patient's genetic makeup to determine a safe and effective drug at the correct dose. To ascertain whether a genotype-guided drug therapy improves patient care, a personalized medicine intervention may be evaluated within the framework of a randomized controlled trial. The statistical design of this type of personalized medicine intervention requires special considerations: the distribution of relevant allelic variants in the study population; and whether the pharmacogenetic intervention is equally effective across subpopulations defined by allelic variants.
The statistical design of the Clarification of Optimal Anticoagulation through Genetics (COAG) trial serves as an illustrative example of a personalized medicine intervention that uses each subject's genotype information. The COAG trial is a multicenter, double blind, randomized clinical trial that will compare two approaches to initiation of warfarin therapy: genotype-guided dosing, the initiation of warfarin therapy based on algorithms using clinical information and genotypes for polymorphisms in CYP2C9 and VKORC1; and clinical-guided dosing, the initiation of warfarin therapy based on algorithms using only clinical information.
We determine an absolute minimum detectable difference of 5.49% based on an assumed 60% population prevalence of zero or multiple genetic variants in either CYP2C9 or VKORC1 and an assumed 15% relative effectiveness of genotype-guided warfarin initiation for those with zero or multiple genetic variants. Thus we calculate a sample size of 1238 to achieve a power level of 80% for the primary outcome. We show that reasonable departures from these assumptions may decrease statistical power to 65%.
In a personalized medicine intervention, the minimum detectable difference used in sample size calculations is not a known quantity, but rather an unknown quantity that depends on the genetic makeup of the subjects enrolled. Given the possible sensitivity of sample size and power calculations to these key assumptions, we recommend that they be monitored during the conduct of a personalized medicine intervention.
clinicaltrials.gov: NCT00839657.
目前人们对药物遗传学非常感兴趣:确定调节药物作用的基因变异,特别强调提高药物安全性和疗效。确定这种变异的能力促使应用个性化药物治疗,利用患者的基因构成来确定安全有效的药物剂量。为了确定基因型指导的药物治疗是否改善了患者的护理,可在随机对照试验的框架内评估个性化药物干预。这种个性化药物干预的统计设计需要特殊考虑:研究人群中相关等位基因变异的分布;以及药物遗传学干预是否对等位基因变异定义的亚组同样有效。
通过基因确定最佳抗凝作用的澄清(COAG)试验的统计设计就是一个使用每个受试者基因型信息的个性化药物干预的示例。COAG 试验是一项多中心、双盲、随机临床试验,将比较两种华法林治疗起始方法:基因型指导剂量,根据使用临床信息和 CYP2C9 和 VKORC1 多态性的基因型的算法启动华法林治疗;以及临床指导剂量,根据仅使用临床信息的算法启动华法林治疗。
我们根据假设 CYP2C9 或 VKORC1 中零个或多个遗传变异的人群患病率为 60%,以及零个或多个遗传变异的基因型指导华法林起始的相对有效性为 15%,确定了 5.49%的绝对最小可检测差异。因此,我们计算出 1238 例的样本量,以达到主要结局的 80%功效。我们表明,这些假设的合理偏离可能会使统计功效降低至 65%。
在个性化药物干预中,样本量计算中使用的最小可检测差异不是一个已知数量,而是一个未知数量,取决于纳入受试者的基因构成。鉴于这些关键假设对样本量和功效计算的可能敏感性,我们建议在进行个性化药物干预时监测这些假设。
clinicaltrials.gov:NCT00839657。