Department of Pharmacology, Program in Neuroscience, University of Illinois, Urbana, Illinois 61801, USA.
J Neurosci. 2010 Nov 17;30(46):15419-29. doi: 10.1523/JNEUROSCI.3636-10.2010.
The low-threshold transient calcium current (I(T)) plays a critical role in modulating the firing behavior of thalamic neurons; however, the role of I(T) in the integration of afferent information within the thalamus is virtually unknown. We have used two-photon laser scanning microscopy coupled with whole-cell recordings to examine calcium dynamics in the neurons of the strategically located thalamic reticular nucleus (TRN). We now report that a single somatic burst discharge evokes large-magnitude calcium responses, via I(T), in distal TRN dendrites. The magnitude of the burst-evoked calcium response was larger than those observed in thalamocortical projection neurons under the same conditions. We also demonstrate that direct stimulation of distal TRN dendrites, via focal glutamate application and synaptic activation, can locally activate distal I(T), producing a large distal calcium response independent of the soma/proximal dendrites. These findings strongly suggest that distally located I(T) may function to amplify afferent inputs. Boosting the magnitude ensures integration at the somatic level by compensating for attenuation that would normally occur attributable to passive cable properties. Considering the functional architecture of the TRN, elongated nature of their dendrites, and robust dendritic signaling, these distal dendrites could serve as sites of intense intra-modal/cross-modal integration and/or top-down modulation, leading to focused thalamocortical communication.
阈下瞬态钙电流 (I(T)) 在调节丘脑神经元的发放行为中起着关键作用;然而,I(T) 在丘脑内传入信息整合中的作用实际上是未知的。我们使用双光子激光扫描显微镜结合全细胞膜片钳记录技术,研究了位于策略位置的丘脑网状核 (TRN) 神经元中的钙动力学。我们现在报告说,单个体突发放电通过 I(T) 在远端 TRN 树突中引起大幅度的钙反应。在相同条件下,爆发诱发的钙反应的幅度大于在丘脑皮质投射神经元中观察到的幅度。我们还证明,通过局部谷氨酸应用和突触激活直接刺激远端 TRN 树突,可以局部激活远端 I(T),产生与体部/近端树突无关的大的远端钙反应。这些发现强烈表明,位于远端的 I(T) 可能起到放大传入输入的作用。通过补偿由于被动电缆特性而通常会发生的衰减,从而增加幅度,从而确保在体部水平上进行整合。考虑到 TRN 的功能结构、其树突的细长性质以及强大的树突信号,这些远端树突可以作为强烈的模态内/模态间整合和/或自上而下调制的部位,从而导致聚焦的丘脑皮质通讯。