Department of Physics, Washington University, St Louis, Missouri 63130, USA.
Microsc Res Tech. 2011 Jul;74(7):682-7. doi: 10.1002/jemt.20954. Epub 2010 Nov 17.
Protein-surface interactions cause the desirable effect of controlled protein adsorption onto biodevices as well as the undesirable effect of protein fouling. The key to controlling protein-surface adsorptions is to identify and quantify the main adsorption mechanisms: adsorptions that occur (1) while depositing a protein solution onto dry surfaces and (2) after the deposition onto wet surfaces. Bulk measurements cannot reveal the dynamic protein adsorption pathways and thus cannot differentiate between the two adsorption mechanisms. We imaged the interactions of single streptavidin molecules with hydrophobic fused-silica surfaces in real-time. We observed both adsorbed proteins on surfaces and diffusing proteins near surfaces and analyzed their adsorption kinetics. Our analysis shows that the protein solution deposition process is the primary mechanism of streptavidin adsorption onto surfaces at the subnanomolar to nanomolar protein concentrations. Furthermore, we found that hydrophilic fused-silica surfaces can prevent the adsorption of streptavidin molecules.
蛋白质-表面相互作用导致了控制蛋白质吸附到生物装置上的理想效果,同时也导致了蛋白质污染的不良效果。控制蛋白质-表面吸附的关键是识别和量化主要的吸附机制:(1)在将蛋白质溶液沉积到干燥表面上时发生的吸附,以及(2)在沉积到湿表面上之后发生的吸附。体积测量无法揭示蛋白质动态吸附途径,因此无法区分这两种吸附机制。我们实时成像了单个链霉亲和素分子与疏水融合硅表面的相互作用。我们观察到了表面上的吸附蛋白和表面附近扩散的蛋白,并分析了它们的吸附动力学。我们的分析表明,在亚纳摩尔到纳摩尔的蛋白质浓度下,蛋白质溶液沉积过程是链霉亲和素吸附到表面的主要机制。此外,我们发现亲水融合硅表面可以防止链霉亲和素分子的吸附。