Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
Inorg Chem. 2010 Dec 20;49(24):11439-48. doi: 10.1021/ic1015109. Epub 2010 Nov 18.
Stopped-flow kinetic studies of the oxidation of Fe(III)-TAML catalysts, F e{1,2-X(2)C(6)H(2)-4,5-( NCOCMe(2) NCO)(2)CMe(2)}(OH(2)) (1), by t-BuOOH and H(2)O(2) in water affording Fe(IV) species has helped to clarify the mechanism of the interaction of 1 with primary oxidants. The data collected for substituted Fe(III)-TAMLs at pH 6.0-13.8 and 17-45 °C has confirmed that the reaction is first order both in 1 and in peroxides. Bell-shaped pH profiles of the effective second-order rate constants k(I) have maximum values in the pH range of 10.5-12.5 depending on the nature of 1 and the selected peroxide. The "acidic" part is governed by the deprotonation of the diaqua form of 1 and therefore electron-withdrawing groups move the lower pH limit of the reactivity toward neutral pH, although the rate constants k(I) do not change much. The dissection of k(I) into individual intrinsic rate constants k(1) (FeL(OH(2))(2) + ROOH), k(2) (FeL(OH(2))OH) + ROOH), k(3) (FeL(OH(2))(2) + ROO(-)), and k(4) (FeL(OH(2))OH) + ROO(-)) provides a model for understanding the bell-shaped pH-profiles. Analysis of the pressure and substituent effects on the reaction kinetics suggest that the k(2) pathway is (i) more probable than the kinetically indistinguishable k(3) pathway, and (ii) presumably mechanistically similar to the induced cleavage of the peroxide O-O bond postulated for cytochrome P450 enzymes. The redox titration of 1 by Ir(IV) and electrochemical data suggest that under basic conditions the reduction potential for the half-reaction Fe(IV)L(=O)(OH(2)) + e(-) + H(2)O → Fe(III)L(OH)(OH(2)) + OH(-) is close to 0.87 V (vs NHE).
停流动力学研究表明,Fe(III)-TAML 催化剂Fe{1,2-X(2)C(6)H(2)-4,5-(NCOCMe(2)NCO)(2)CMe(2)}(OH(2))(1)与 t-BuOOH 和 H(2)O(2)在水中的氧化反应,生成了 Fe(IV)物种,这有助于阐明 1 与初级氧化剂相互作用的机制。在 pH 值为 6.0-13.8 和 17-45°C 下对取代的 Fe(III)-TAML 收集的数据证实,该反应在 1 和过氧化物中均为一级反应。有效二级速率常数 k(I)的钟形 pH 曲线在 pH 值为 10.5-12.5 范围内具有最大值,具体取决于 1 的性质和所选的过氧化物。“酸性”部分受 1 的二水合形式的去质子化控制,因此吸电子基团将反应的低 pH 极限移向中性 pH,尽管速率常数 k(I)变化不大。将 k(I)分解为单个内在速率常数 k(1)(FeL(OH(2))(2) + ROOH)、k(2) (FeL(OH(2))OH + ROOH)、k(3) (FeL(OH(2))(2) + ROO(-)) 和 k(4) (FeL(OH(2))OH + ROO(-)),为理解钟形 pH 曲线提供了模型。对反应动力学的压力和取代基效应的分析表明,k(2)途径(i)比动力学上不可区分的 k(3)途径更有可能,并且(ii)可能与假定的细胞色素 P450 酶中过氧化物 O-O 键的诱导裂解在机理上相似。Ir(IV)对 1 的氧化还原滴定和电化学数据表明,在碱性条件下,半反应Fe(IV)L(=O)(OH(2)) + e(-) + H(2)O → Fe(III)L(OH)(OH(2)) + OH(-)的还原电位接近 0.87 V(相对于 NHE)。