Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
Mol Brain. 2010 Nov 18;3:36. doi: 10.1186/1756-6606-3-36.
Math5-null mutation results in the loss of retinal ganglion cells (RGCs) and in a concurrent increase of amacrine and cone cells. However, it remains unclear whether there is a cell fate switch of Math5-lineage cells in the absence of Math5 and whether MATH5 cell-autonomously regulates the differentiation of the above retinal neurons. Here, we performed a lineage analysis of Math5-expressing cells in developing mouse retinas using a conditional GFP reporter (Z/EG) activated by a Math5-Cre knock-in allele. We show that during normal retinogenesis, Math5-lineage cells mostly develop into RGCs, horizontal cells, cone photoreceptors, rod photoreceptors, and amacrine cells. Interestingly, amacrine cells of Math5-lineage cells are predominately of GABAergic, cholinergic, and A2 subtypes, indicating that Math5 plays a role in amacrine subtype specification. In the absence of Math5, more Math5-lineage cells undergo cell fate conversion from RGCs to the above retinal cell subtypes, and occasionally to cone-bipolar cells and Müller cells. This change in cell fate choices is accompanied by an up-regulation of NEUROD1, RXRγ and BHLHB5, the transcription factors essential for the differentiation of retinal cells other than RGCs. Additionally, loss of Math5 causes the failure of early progenitors to exit cell cycle and leads to a significant increase of Math5-lineage cells remaining in cell cycle. Collectively, these data suggest that Math5 regulates the generation of multiple retinal cell types via different mechanisms during retinogenesis.
Math5 缺失突变导致视网膜神经节细胞(RGCs)的丧失,同时增加了无长突细胞和圆锥细胞。然而,Math5 缺失是否会导致 Math5 谱系细胞发生细胞命运转变,以及 MATH5 是否自主调节上述视网膜神经元的分化,目前尚不清楚。在这里,我们使用一种由 Math5-Cre 敲入等位基因激活的条件性 GFP 报告基因(Z/EG),对发育中的小鼠视网膜中表达 Math5 的细胞进行了谱系分析。我们发现,在正常的视网膜发生过程中,Math5 谱系细胞大多分化为 RGCs、水平细胞、圆锥细胞、视杆细胞和无长突细胞。有趣的是,Math5 谱系细胞的无长突细胞主要是 GABA 能、胆碱能和 A2 亚型,表明 Math5 在无长突细胞亚型特化中发挥作用。在 Math5 缺失的情况下,更多的 Math5 谱系细胞经历了从 RGC 到上述视网膜细胞亚型的细胞命运转变,偶尔也会转变为圆锥体双极细胞和 Müller 细胞。这种细胞命运选择的变化伴随着 NEUROD1、RXRγ 和 BHLHB5 的上调,这些转录因子对于除 RGC 以外的视网膜细胞的分化是必不可少的。此外,Math5 的缺失导致早期祖细胞无法退出细胞周期,并导致处于细胞周期中的 Math5 谱系细胞显著增加。总的来说,这些数据表明,Math5 在视网膜发生过程中通过不同的机制调节多种视网膜细胞类型的产生。