Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany.
J Phys Chem B. 2010 Dec 23;114(50):16894-901. doi: 10.1021/jp107051r. Epub 2010 Nov 24.
Reaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides R-26 exhibit changes in the recombination kinetics of the charge-separated radical-pair state, P(·+) Q(A)(·-), composed of the dimeric bacteriochlorophyll donor P and the ubiquinone-10 acceptor Q(A), depending on whether the RCs are cooled to cryogenic temperatures in the dark or under continuous illumination (Kleinfeld et al. Biochemistry 1984, 23, 5780-5786). Structural changes near redox-active cofactors have been postulated to be responsible for these changes in kinetics and to occur in the course of light-induced oxidation and reduction of the cofactors thereby assuring a high quantum yield. Here we investigated such potential light-induced structural changes, associated with the formation of P(·+) Q(A)(·-), via pulsed electron-nuclear double resonance (ENDOR) at Q-band (34 GHz) and pulsed electron-electron double resonance (PELDOR) at W-band (95 GHz). Two types of light excitation have been employed for which identical RC samples were prepared: (a) one sample was frozen in the dark and then illuminated to generate transient P(·+) Q(A)(·-), and (b) one was frozen under illumination which resulted in both trapped and transient P(·+) Q(A)(·-) at 80 K. The hyperfine interactions between Q(A)(·-) and the protein were found to be the same in RCs frozen in the dark as in RCs frozen under illumination. Furthermore, these interactions are completely consistent with those observed in RC crystals frozen in the dark. Thus, QA remains in its binding site with the same position and orientation upon reduction. This conclusion is consistent with the result of our orientation-resolving PELDOR experiments on transient P(·+) Q(A)(·-) radical pairs. However, these findings are incompatible with the recently proposed ~60° reorientation of Q(A) upon its photoreduction, as deduced from an analysis of Q-band quantum-beat oscillations (Heinen et al. J. Am. Chem. Soc. 2007, 129, 15935-15946). Such a large reorientation appears improbable, and our objections against this proposition are substantiated here in detail. Our results show that Q(A) is initially in an orientation that is favorable for its light-driven reduction. This diminishes the reorganization requirements for fast electron reduction and high quantum efficiency.
反应中心(RCs)来自光合细菌红杆菌(Rb.)sphaeroides R-26,其组成二聚菌叶绿素供体 P 和泛醌-10 受体 Q(A)的电荷分离自由基对 P(·+) Q(A)(·-)的重组动力学发生变化,这取决于 RCs 是在黑暗中还是在连续光照下冷却到低温(Kleinfeld 等人,生物化学 1984 年,23 卷,5780-5786)。已经假设在氧化还原活性辅因子附近发生结构变化是造成这些动力学变化的原因,并在辅因子的光诱导氧化和还原过程中发生,从而确保高量子产率。在这里,我们通过在 Q 波段(34GHz)的脉冲电子-核双共振(ENDOR)和在 W 波段(95GHz)的脉冲电子-电子双共振(PELDOR)研究了与 P(·+) Q(A)(·-)形成相关的这种潜在的光诱导结构变化。已经采用了两种类型的光激发,为其制备了相同的 RC 样品:(a)一个样品在黑暗中冷冻,然后被照射以产生瞬态 P(·+) Q(A)(·-),(b)一个样品在光照下冷冻,导致 80K 时存在捕获和瞬态 P(·+) Q(A)(·-)。在黑暗中冷冻的 RCs 和在光照下冷冻的 RCs 中,Q(A)(·-)与蛋白质之间的超精细相互作用是相同的。此外,这些相互作用与在黑暗中冷冻的 RC 晶体中观察到的相互作用完全一致。因此,QA 在还原时仍保持在其结合部位,位置和方向相同。这一结论与我们对瞬态 P(·+) Q(A)(·-)自由基对的分辨定向 PELDOR 实验的结果一致。然而,这些发现与最近提出的 QA 在光还原时约 60°的重新取向不一致,这是从 Q 波段量子拍动振荡的分析中推断出来的(Heinen 等人,美国化学学会杂志 2007 年,129 卷,15935-15946)。这种大的重新取向似乎不太可能,我们在这里详细地提出了反对这一观点的理由。我们的结果表明,QA 最初处于有利于其光驱动还原的取向。这减少了快速电子还原和高量子效率的重组要求。