Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
J Chem Phys. 2010 Nov 21;133(19):194101. doi: 10.1063/1.3503040.
Recently introduced local response dispersion method [T. Sato and H. Nakai, J. Chem. Phys. 131, 224104 (2009)], which is a first-principles alternative to empirical dispersion corrections in density functional theory, is implemented with generalized multicenter interactions involving both atomic and atomic pair polarizabilities. The generalization improves the asymptote of intermolecular interactions, reducing the mean absolute percentage error from about 30% to 6% in the molecular C(6) coefficients of more than 1000 dimers, compared to experimental values. The method is also applied to calculations of potential energy curves of molecules in the S22 database [P. Jurečka et al., Phys. Chem. Chem. Phys. 8, 1985 (2006)]. The calculated potential energy curves are in a good agreement with reliable benchmarks recently published by Molnar et al. [J. Chem. Phys. 131, 065102 (2009)]. These improvements are achieved at the price of increasing complexity in the implementation, but without losing the computational efficiency of the previous two-center (atom-atom) formulation. A set of different truncations of two-center and three- or four-center interactions is shown to be optimal in the cost-performance balance.
最近引入的局部响应弥散方法 [T. Sato 和 H. Nakai,J. Chem. Phys. 131, 224104 (2009)],是密度泛函理论中经验弥散修正的一种第一性原理替代方法,它采用涉及原子和原子对极化率的广义多中心相互作用来实现。这种推广改善了分子间相互作用的渐近行为,与实验值相比,在超过 1000 个二聚体的分子 C(6)系数中,将平均绝对百分比误差从约 30%降低到 6%。该方法还应用于 S22 数据库中分子的势能曲线计算 [P. Jurečka 等人,Phys. Chem. Chem. Phys. 8, 1985 (2006)]。计算出的势能曲线与 Molnar 等人最近发表的可靠基准值吻合良好 [J. Chem. Phys. 131, 065102 (2009)]。这些改进是在实施复杂性增加的情况下实现的,但没有失去前两个中心(原子-原子)公式的计算效率。展示了一组不同的二中心和三中心或四中心相互作用的截断在成本性能平衡中是最佳的。