Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
Mol Cell. 2010 Dec 10;40(5):725-35. doi: 10.1016/j.molcel.2010.11.014. Epub 2010 Nov 25.
Eukaryotic transcription and mRNA processing depend upon the coordinated interactions of many proteins, including Spn1 and Spt6, which are conserved across eukaryotes, are essential for viability, and associate with each other in some of their biologically important contexts. Here we report crystal structures of the Spn1 core alone and in complex with the binding determinant of Spt6. Mutating interface residues greatly diminishes binding in vitro and causes strong phenotypes in vivo, including a defect in maintaining repressive chromatin. Overexpression of Spn1 partially suppresses the defects caused by an spt6 mutation affecting the Spn1 interface, indicating that the Spn1-Spt6 interaction is important for managing chromatin. Spt6 binds nucleosomes directly in vitro, and this interaction is blocked by Spn1, providing further mechanistic insight into the function of the interaction. These data thereby reveal the structural and biochemical bases of molecular interactions that function in the maintenance of chromatin structure.
真核生物的转录和 mRNA 加工依赖于许多蛋白质的协调相互作用,包括 Spn1 和 Spt6,它们在真核生物中是保守的,对生存是必需的,并且在一些重要的生物学背景下相互结合。在这里,我们报告了 Spn1 核心结构的晶体结构,以及与 Spt6 结合决定因素的复合物结构。突变界面残基极大地降低了体外结合,并在体内引起强烈的表型,包括维持抑制性染色质的缺陷。Spn1 的过表达部分抑制了影响 Spn1 界面的 spt6 突变引起的缺陷,表明 Spn1-Spt6 相互作用对于管理染色质是重要的。Spt6 可在体外直接与核小体结合,而 Spn1 可阻断这种相互作用,这为该相互作用的功能提供了进一步的机制见解。这些数据因此揭示了在维持染色质结构中起作用的分子相互作用的结构和生化基础。