Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
J Mol Biol. 2011 Jan 21;405(3):630-41. doi: 10.1016/j.jmb.2010.10.043. Epub 2010 Nov 19.
Zinc-finger nucleases (ZFNs) have emerged as powerful tools for delivering a targeted genomic double-strand break (DSB) to either stimulate local homologous recombination with investigator-provided donor DNA or induce gene mutations at the site of cleavage in the absence of a donor by nonhomologous end joining both in plant cells and in mammalian cells, including human cells. ZFNs are formed by fusing zinc-finger proteins to the nonspecific cleavage domain of the FokI restriction enzyme. ZFN-mediated gene targeting yields high gene modification efficiencies (>10%) in a variety of cells and cell types by delivering a recombinogenic DSB to the targeted chromosomal locus, using two designed ZFNs. The mechanism of DSB by ZFNs requires (1) two ZFN monomers to bind to their adjacent cognate sites on DNA and (2) the FokI nuclease domains to dimerize to form the active catalytic center for the induction of the DSB. In the case of ZFNs fused to wild-type FokI cleavage domains, homodimers may also form; this could limit the efficacy and safety of ZFNs by inducing off-target cleavage. In this article, we report further refinements to obligate heterodimer variants of the FokI cleavage domain for the creation of custom ZFNs with minimal cellular toxicity. The efficacy and efficiency of the reengineered obligate heterodimer variants of the FokI cleavage domain were tested using the green fluorescent protein gene targeting reporter system. The three-finger and four-finger zinc-finger protein fusions to the REL_DKK pair among the newly generated FokI nuclease domain variants appear to eliminate or greatly reduce the toxicity of designer ZFNs to human cells.
锌指核酸酶 (ZFNs) 已成为在植物细胞和哺乳动物细胞(包括人类细胞)中靶向基因组双链断裂 (DSB) 的有力工具,可通过提供供体 DNA 来刺激局部同源重组,或在没有供体的情况下通过非同源末端连接在切割部位诱导基因突变。ZFNs 是通过将锌指蛋白融合到 FokI 限制性内切酶的非特异性切割结构域而形成的。ZFN 介导的基因靶向通过将重组性 DSB 递送到靶向的染色体位点,使用两个设计的 ZFN,在各种细胞和细胞类型中产生高基因修饰效率 (>10%)。ZFN 诱导 DSB 的机制需要 (1) 两个 ZFN 单体结合到它们在 DNA 上的相邻同源位点,以及 (2) FokI 核酸酶结构域二聚化以形成诱导 DSB 的活性催化中心。在与野生型 FokI 切割结构域融合的 ZFN 的情况下,也可能形成同源二聚体;这可能通过诱导脱靶切割来限制 ZFN 的功效和安全性。在本文中,我们报告了进一步改进 FokI 切割结构域的必需异源二聚体变体,用于创建具有最小细胞毒性的定制 ZFN。使用绿色荧光蛋白基因靶向报告系统测试了重新设计的 FokI 切割结构域必需异源二聚体变体的功效和效率。新生成的 FokI 核酸酶结构域变体中的 REL_DKK 对三指和四指锌指蛋白融合似乎消除或大大降低了设计 ZFN 对人类细胞的毒性。