Suppr超能文献

使用高分辨率计算机断层扫描(HRCT)肺部图像的多内核学习用于弥漫性肺部疾病的分类

Multiple kernel learning for classification of diffuse lung disease using HRCT lung images.

作者信息

Vo Kiet T, Sowmya Arcot

机构信息

The School of Computer Science and Engineering, UNSW, Australia.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3085-8. doi: 10.1109/IEMBS.2010.5626113.

Abstract

A novel algorithm is presented for classification of four patterns of diffuse lung disease: normal, emphysema, honeycombing and ground glass opacity, on the basis of textural analysis of high resolution computed tomography (HRCT) lung images. The algorithm incorporates scale-space features based on Gaussian derivative filters and multi-dimensional multi-scale features based on wavelet and contourlet transforms of the original images. The mean, standard deviation, skewness and kurtosis along with generalized Gaussian density are used to model the output of filters and transforms, and construct feature vectors. Multi-class multiple kernel learning (m-MKL) classifier is used to evaluate the performance of the feature extraction scheme. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512×512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs from slices already marked by experienced radiologists. The average sensitivity and specificity achieved is 94.16% and 98.68%, respectively.

摘要

本文提出了一种基于高分辨率计算机断层扫描(HRCT)肺部图像纹理分析的新型算法,用于对四种弥漫性肺部疾病模式进行分类:正常、肺气肿、蜂窝状和磨玻璃影。该算法结合了基于高斯导数滤波器的尺度空间特征以及基于原始图像小波和轮廓波变换的多维多尺度特征。利用均值、标准差、偏度、峰度以及广义高斯密度对滤波器和变换的输出进行建模,并构建特征向量。使用多类多核学习(m-MKL)分类器来评估特征提取方案的性能。该方法在来自38名患者的89个切片的数据集上进行了测试,每个切片大小为512×512,DICOM格式,16位/像素。该数据集包含来自已由经验丰富的放射科医生标记的切片的70,000个感兴趣区域(ROI)。所实现的平均灵敏度和特异性分别为94.16%和98.68%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验