Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
IEEE Trans Biomed Eng. 2011 Mar;58(3):705-12. doi: 10.1109/TBME.2010.2093933. Epub 2010 Nov 18.
Electric-field intrabody communication (EF-IBC) is a promising new scheme for the data exchange among wearable biomedical sensors. It uses the body as the signal transmission media. Compared with existing body area network (BAN) schemes, EF-IBC can achieve higher data rate with less transmission power. Until now, the detailed EF-IBC channel mechanism is not well understood. In this work, finite-element method (FEM) is utilized for the first time to investigate the EF-IBC channel. A circuit-coupled FEM model is established for the EF-IBC channel. The FEM model is extensively verified by experimental measurements. The new physical model enables the revelation of characteristics and effects of different components in the EF-IBC channel. The FEM investigation finds that the capacitive return path is critical to the characteristics of the EF-IBC channel. Parameters of the capacitive return path are quantitatively measured. The investigation also finds that the body plays an important role to the return path capacitance. The forward body path can be well modeled by a cascade of π-shaped circuits. Based on the FEM model of the EF-IBC channel, a simplified circuit model is derived to provide an efficient tool for the transceiver design.
电场体内通信(EF-IBC)是一种很有前途的新方案,可用于可穿戴生物医学传感器之间的数据交换。它利用人体作为信号传输介质。与现有的体域网(BAN)方案相比,EF-IBC 可以用更少的传输功率实现更高的数据速率。到目前为止,EF-IBC 信道的详细机制还没有被很好地理解。在这项工作中,首次利用有限元方法(FEM)来研究 EF-IBC 信道。为 EF-IBC 信道建立了电路耦合的 FEM 模型。该 FEM 模型通过实验测量得到了广泛验证。新的物理模型揭示了 EF-IBC 信道中不同组件的特性和影响。FEM 研究发现,电容返回路径对 EF-IBC 信道的特性至关重要。定量测量了电容返回路径的参数。研究还发现,人体对返回路径电容起着重要作用。正向人体路径可以很好地用级联的π形电路来建模。基于 EF-IBC 信道的 FEM 模型,推导出了一个简化的电路模型,为收发器设计提供了一个有效的工具。