Suppr超能文献

基于准静态场模型传递函数的体电型内通信通道特性研究。

Study of channel characteristics for galvanic-type intra-body communication based on a transfer function from a quasi-static field model.

机构信息

Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China.

出版信息

Sensors (Basel). 2012 Nov 27;12(12):16433-50. doi: 10.3390/s121216433.

Abstract

Intra-Body Communication (IBC), which modulates ionic currents over the human body as the communication medium, offers a low power and reliable signal transmission method for information exchange across the body. This paper first briefly reviews the quasi-static electromagnetic (EM) field modeling for a galvanic-type IBC human limb operating below 1 MHz and obtains the corresponding transfer function with correction factor using minimum mean square error (MMSE) technique. Then, the IBC channel characteristics are studied through the comparison between theoretical calculations via this transfer function and experimental measurements in both frequency domain and time domain. High pass characteristics are obtained in the channel gain analysis versus different transmission distances. In addition, harmonic distortions are analyzed in both baseband and passband transmissions for square input waves. The experimental results are consistent with the calculation results from the transfer function with correction factor. Furthermore, we also explore both theoretical and simulation results for the bit-error-rate (BER) performance of several common modulation schemes in the IBC system with a carrier frequency of 500 kHz. It is found that the theoretical results are in good agreement with the simulation results.

摘要

体内通信(IBC)以人体中的离子电流作为通信介质,为跨体信息交换提供了低功耗和可靠的信号传输方法。本文首先简要回顾了用于 1MHz 以下电流型 IBC 人体肢体的准静态电磁(EM)场建模,并使用最小均方误差(MMSE)技术获得了相应的传递函数及其修正因子。然后,通过该传递函数的理论计算与频域和时域的实验测量结果的比较,研究了 IBC 信道特性。在不同的传输距离下,对信道增益进行了高通特性分析。此外,还分析了方波输入时在基带和通带传输中的谐波失真。实验结果与修正因子传递函数的计算结果一致。此外,我们还探讨了在载波频率为 500kHz 的 IBC 系统中,几种常见调制方案的误码率(BER)性能的理论和仿真结果。结果表明,理论结果与仿真结果吻合较好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e2/3571791/28243818e4ff/sensors-12-16433f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验