Suppr超能文献

基于心肺信号和活动记录仪的睡眠/觉醒检测

Sleep/wake detection based on cardiorespiratory signals and actigraphy.

作者信息

Devot Sandrine, Dratwa Reimund, Naujokat Elke

机构信息

Philips Research Europe, Weisshausstr. 2, 52066 Aachen, Germany.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5089-92. doi: 10.1109/IEMBS.2010.5626208.

Abstract

We investigated the potential of adding cardiac and respiratory activity information to actigraphy for sleep-wake staging. A dataset of 35 recordings with full polysomnography and actigraphy was used to assess the performance of an automated sleep/wake Bayesian classifier using electrocardiogram, inductance plethysmogram estimate of respiratory effort and actigraphy. The best performance was achieved with the linear discriminant model that provided an agreement of Cohen's kappa=0.62 for one of the configurations of the classifier, corresponding to an accuracy of 86.8%, a sensitivity of 66.9% and a specificity of 93.1%. It shows that combining different vital signs for a home sleep-wake staging system could be a promising approach.

摘要

我们研究了将心脏和呼吸活动信息添加到活动记录仪中用于睡眠-觉醒分期的潜力。使用一个包含35份全夜多导睡眠图和活动记录仪记录的数据集,来评估一种利用心电图、呼吸努力的电感式体积描记图估计值和活动记录仪的自动睡眠/觉醒贝叶斯分类器的性能。线性判别模型取得了最佳性能,对于分类器的一种配置,其科恩kappa系数一致性为0.62,对应准确率为86.8%,灵敏度为66.9%,特异性为93.1%。这表明,将不同生命体征结合用于家庭睡眠-觉醒分期系统可能是一种有前景的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验