Devot Sandrine, Dratwa Reimund, Naujokat Elke
Philips Research Europe, Weisshausstr. 2, 52066 Aachen, Germany.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5089-92. doi: 10.1109/IEMBS.2010.5626208.
We investigated the potential of adding cardiac and respiratory activity information to actigraphy for sleep-wake staging. A dataset of 35 recordings with full polysomnography and actigraphy was used to assess the performance of an automated sleep/wake Bayesian classifier using electrocardiogram, inductance plethysmogram estimate of respiratory effort and actigraphy. The best performance was achieved with the linear discriminant model that provided an agreement of Cohen's kappa=0.62 for one of the configurations of the classifier, corresponding to an accuracy of 86.8%, a sensitivity of 66.9% and a specificity of 93.1%. It shows that combining different vital signs for a home sleep-wake staging system could be a promising approach.
我们研究了将心脏和呼吸活动信息添加到活动记录仪中用于睡眠-觉醒分期的潜力。使用一个包含35份全夜多导睡眠图和活动记录仪记录的数据集,来评估一种利用心电图、呼吸努力的电感式体积描记图估计值和活动记录仪的自动睡眠/觉醒贝叶斯分类器的性能。线性判别模型取得了最佳性能,对于分类器的一种配置,其科恩kappa系数一致性为0.62,对应准确率为86.8%,灵敏度为66.9%,特异性为93.1%。这表明,将不同生命体征结合用于家庭睡眠-觉醒分期系统可能是一种有前景的方法。