McDowell Andrew, Donnelly Mark P, Nugent Chris D, Galway Leo, McGrath Michael J
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4654-7. doi: 10.1109/EMBC.2013.6610585.
Utilising strategically positioned bed-mounted accelerometers, the Passive Sleep Actigraphy platform aims to deliver a non-contact method for identifying periods of wakefulness during night-time sleep. One of the key problems in developing data driven approaches for automatic sleep monitoring is managing the inherent sleep/wake class imbalance. In the current study, actigraphy data from three participants over a period of 30 days was collected. Upon examination, it was found that only 10% contained wake data. Consequently, this resulted in classifier overfitting to the majority class (sleep), thereby impeding the ability of the Passive Sleep Actigraphy platform to correctly identify periods of wakefulness during sleep; a key measure in the identification of sleep problems. Utilising Spread Subsample and Synthetic Minority Oversampling Techniques, this paper demonstrates a potential solution to this issue, reporting improvements of up to 28% in wake detection when compared to baseline data while maintaining an overall classifier accuracy of 90%.
被动睡眠活动记录仪平台利用安装在床体上的位置经过精心设计的加速度计,旨在提供一种非接触式方法,用于识别夜间睡眠期间的清醒时段。开发用于自动睡眠监测的数据驱动方法的关键问题之一是处理固有的睡眠/清醒类别不平衡。在当前研究中,收集了三名参与者在30天内的活动记录仪数据。经检查发现,只有10%的数据包含清醒数据。因此,这导致分类器过度拟合多数类别(睡眠),从而阻碍了被动睡眠活动记录仪平台正确识别睡眠期间清醒时段的能力;而这是识别睡眠问题的一项关键指标。本文利用扩展子采样和合成少数过采样技术,展示了针对此问题的一种潜在解决方案,报告称与基线数据相比,清醒检测的改进幅度高达28%,同时整体分类器准确率保持在90%。