Austin Daniel, Leen Todd, Hayes Tamara L, Kaye Jeff, Jimison Holly, Mattek Nora, Pavel Misha
Department of Biomedical Engineering, Oregon Health & Science University. 3303 SW Bond Avenue, Portland, OR 97239, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5230-3. doi: 10.1109/IEMBS.2010.5626276.
In this paper we describe a preliminary modeling and analysis of a unique data set comprising unobtrusive and continuous measurements of gait velocity in the elder participants' residences. The data have been collected as a part of a longitudinal study aimed at early detection of cognitive decline. We motivate these analyses by first presenting evidence that suggests significant relationship between gait parameters and cognitive functions. We then describe a simple, model-based approach to the analysis of gait velocity using a weighted correlation function estimates. One of the main challenges is due to the fact that the daily estimates of the gait parameters vary with the number of walks. We illustrate the importance of using weighted as opposed to unweighted estimates on a sample of different houses. The correlation functions appear to capture behavioral differences that can be related to the cognitive functioning of the participants.
在本文中,我们描述了对一个独特数据集的初步建模与分析,该数据集包含对老年参与者住所中步态速度的非侵入性连续测量。这些数据是作为一项旨在早期检测认知衰退的纵向研究的一部分收集的。我们通过首先展示表明步态参数与认知功能之间存在显著关系的证据来推动这些分析。然后,我们描述了一种使用加权相关函数估计来分析步态速度的基于模型的简单方法。主要挑战之一是由于步态参数的每日估计值会随行走次数而变化。我们在不同房屋的样本上说明了使用加权估计而非未加权估计的重要性。相关函数似乎捕捉到了与参与者认知功能相关的行为差异。