Suppr超能文献

Classifier-assisted metric for chromosome pairing.

作者信息

Ventura Rodrigo, Khmelinskii Artem, Sanches J

机构信息

Institute for Systems and Robotics at the Instituto Superior Técnico, Lisbon Portugal.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6729-32. doi: 10.1109/IEMBS.2010.5626237.

Abstract

Cytogenetics plays a central role in the detection of chromosomal abnormalities and in the diagnosis of genetic diseases. A karyogram is an image representation of human chromosomes arranged in order of decreasing size and paired in 23 classes. In this paper we propose an approach to automatically pair the chromosomes into a karyogram, using the information obtained in a rough SVM-based classification step, to help the pairing process mainly based on similarity metrics between the chromosomes. Using a set of geometric and band pattern features extracted from the chromosome images, the algorithm is formulated on a Bayesian framework, combining the similarity metric with the results from the classifier. The solution is obtained solving a mixed integer program. Two datasets with contrasting quality levels and 836 chromosomes each were used to test and validate the algorithm. Relevant improvements with respect to the algorithm described by the authors in [1] were obtained with average paring rates above 92%, close to the rates obtained by human operators.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验