Archer Akibi, Sabra Karim G
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:170-3. doi: 10.1109/IEMBS.2010.5627271.
Surface mechanomyograms (S-MMGs) are recorded from low frequency (〈100 Hz) mechanical oscillations that are naturally generated by skeletal muscle during voluntary contractions. This study investigates a method to determine the propagation directionality of the S-MMG waves. A 3×5 grid of skin mounted accelerometers was mounted on the biceps brachii muscle during submaximal voluntary contractions. This method resulted in findings that the propagation directionality of the S-MMGs are frequency dependent. At high frequencies (>25 Hz), high spatial coherence values were only measured for sensor pairs aligned along the proximal to distal (i.e. longitudinal) orientation, thus indicating that coherent S-MMG were mainly propagating along the muscle fibers direction of the biceps brachii at those frequencies. On the other hand, at lower frequencies (〈25 Hz), the S-MMG spatial coherence values did not exhibit a specific directionality. This method provides results that have an important implication of finding the average phase velocity of the propagating S-MMG wave, which can be used to determine viscoelastic properties of skeletal muscles.