Suppr超能文献

枯草芽孢杆菌中调控生物膜形成的组氨酸激酶的空间调控。

Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis.

机构信息

Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA.

出版信息

J Bacteriol. 2011 Feb;193(3):679-85. doi: 10.1128/JB.01186-10. Epub 2010 Nov 19.

Abstract

Bacillus subtilis is able to form architecturally complex biofilms on solid medium due to the production of an extracellular matrix. A master regulator that controls the expression of the genes involved in matrix synthesis is Spo0A, which is activated by phosphorylation via a phosphorelay involving multiple histidine kinases. Here we report that four kinases, KinA, KinB, KinC, and KinD, help govern biofilm formation but that their contributions are partially masked by redundancy. We show that the kinases fall into two categories and that the members of each pair (one pair comprising KinA and KinB and the other comprising KinC and KinD) are partially redundant with each other. We also show that the kinases are spatially regulated: KinA and KinB are active principally in the older, inner regions of the colony, and KinC and KinD function chiefly in the younger, outer regions. These conclusions are based on the morphology of kinase mutants, real-time measurements of gene expression using luciferase as a reporter, and confocal microscopy using a fluorescent protein as a reporter. Our findings suggest that multiple signals from the older and younger regions of the colony are integrated by the kinases to determine the overall architecture of the biofilm community.

摘要

枯草芽孢杆菌能够在固体培养基上形成结构复杂的生物膜,这是由于其能够产生细胞外基质。一种主调控因子 Spo0A 通过涉及多个组氨酸激酶的磷酸传递来激活,从而控制与基质合成相关的基因的表达。在这里,我们报告说,有四个激酶(KinA、KinB、KinC 和 KinD)有助于控制生物膜的形成,但它们的作用部分被冗余所掩盖。我们发现,这些激酶可以分为两类,每对(一对是 KinA 和 KinB,另一对是 KinC 和 KinD)成员之间存在部分冗余。我们还表明,这些激酶在空间上受到调节:KinA 和 KinB 主要在菌落的较老、内部区域发挥作用,而 KinC 和 KinD 主要在较年轻、外部区域发挥作用。这些结论是基于激酶突变体的形态、使用荧光素酶作为报告基因的实时基因表达测量以及使用荧光蛋白作为报告基因的共聚焦显微镜得出的。我们的研究结果表明,来自菌落的新旧区域的多个信号被激酶整合,以确定生物膜群落的整体结构。

相似文献

1
Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis.
J Bacteriol. 2011 Feb;193(3):679-85. doi: 10.1128/JB.01186-10. Epub 2010 Nov 19.
4
Phosphorylation of Spo0A by the histidine kinase KinD requires the lipoprotein med in Bacillus subtilis.
J Bacteriol. 2011 Aug;193(15):3949-55. doi: 10.1128/JB.05199-11. Epub 2011 May 27.
5
Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis.
Mol Microbiol. 2000 Nov;38(3):535-42. doi: 10.1046/j.1365-2958.2000.02148.x.
6
Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis.
J Bacteriol. 1995 Feb;177(3):861-3. doi: 10.1128/jb.177.3.861-863.1995.
7
Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans.
J Bacteriol. 2015 Aug;197(16):2675-84. doi: 10.1128/JB.00257-15. Epub 2015 Jun 8.
9
In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis.
Microbiology (Reading). 2015 May;161(Pt 5):1092-1104. doi: 10.1099/mic.0.000054. Epub 2015 Feb 20.
10
Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.
J Bacteriol. 2017 Oct 17;199(22). doi: 10.1128/JB.00204-17. Print 2017 Nov 15.

引用本文的文献

1
Automated Platform for the Analysis of Multi-Plate Growth and Reporter Data.
Microorganisms. 2025 Aug 13;13(8):1889. doi: 10.3390/microorganisms13081889.
2
A novel regulation on the developmental checkpoint protein Sda that controls sporulation and biofilm formation in .
J Bacteriol. 2025 Mar 20;207(3):e0021024. doi: 10.1128/jb.00210-24. Epub 2025 Feb 11.
3
RpoN mediates biofilm formation by directly controlling gene cluster and c-di-GMP synthetic metabolism in .
Biofilm. 2024 Dec 15;9:100242. doi: 10.1016/j.bioflm.2024.100242. eCollection 2025 Jun.
5
Comparative transcriptomics reveal different genetic adaptations of biofilm formation in isolate 1JN2 in response to Cd treatment.
Front Microbiol. 2022 Oct 4;13:1002482. doi: 10.3389/fmicb.2022.1002482. eCollection 2022.
6
metatranscriptomic approach for tracking biofilm-related effectors in dairies and its importance for improving food safety.
Front Microbiol. 2022 Aug 25;13:928480. doi: 10.3389/fmicb.2022.928480. eCollection 2022.
7
Cell Differentiation, Biofilm Formation and Environmental Prevalence.
Microorganisms. 2022 May 27;10(6):1108. doi: 10.3390/microorganisms10061108.
8
Experimental Designs to Study the Aggregation and Colonization of Biofilms by Video Microscopy With Statistical Confidence.
Front Microbiol. 2022 Jan 13;12:785182. doi: 10.3389/fmicb.2021.785182. eCollection 2021.
10
Colonization of Roots Induces Multiple Biosynthetic Clusters for Antibiotic Production.
Front Cell Infect Microbiol. 2021 Sep 3;11:722778. doi: 10.3389/fcimb.2021.722778. eCollection 2021.

本文引用的文献

1
Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability.
Mol Microbiol. 2010 Oct;78(1):218-29. doi: 10.1111/j.1365-2958.2010.07335.x.
2
Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16286-90. doi: 10.1073/pnas.1008368107. Epub 2010 Aug 30.
3
Small genes under sporulation control in the Bacillus subtilis genome.
J Bacteriol. 2010 Oct;192(20):5402-12. doi: 10.1128/JB.00534-10. Epub 2010 Aug 13.
4
Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2230-4. doi: 10.1073/pnas.0910560107. Epub 2010 Jan 13.
5
Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):280-5. doi: 10.1073/pnas.0810940106. Epub 2008 Dec 29.
6
Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15547-52. doi: 10.1073/pnas.0805203105.
7
Biofilm development with an emphasis on Bacillus subtilis.
Curr Top Microbiol Immunol. 2008;322:1-16. doi: 10.1007/978-3-540-75418-3_1.
8
Control of cell fate by the formation of an architecturally complex bacterial community.
Genes Dev. 2008 Apr 1;22(7):945-53. doi: 10.1101/gad.1645008.
9
Bistability and biofilm formation in Bacillus subtilis.
Mol Microbiol. 2008 Jan;67(2):254-63. doi: 10.1111/j.1365-2958.2007.06040.x. Epub 2007 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验