Abramson Family Cancer Research Institute and Department of Cancer Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Cancer Res. 2010 Dec 1;70(23):9693-702. doi: 10.1158/0008-5472.CAN-10-2286. Epub 2010 Nov 23.
Previous studies indicate that oncogenic stress activates the ATR-Chk1 pathway. Here, we show that ATR-Chk1 pathway engagement is essential for limiting genomic instability following oncogenic Ras transformation. ATR pathway inhibition in combination with oncogenic Ras expression synergistically increased genomic instability, as quantified by chromatid breaks, sister chromatid exchanges, and H2AX phosphorylation. This level of instability was significantly greater than that observed following ATR suppression in untransformed control cells. In addition, consistent with a deficiency in long-term genome maintenance, hypomorphic ATR pathway reduction to 16% of normal levels was synthetic lethal with oncogenic Ras expression in cultured cells. Notably, elevated genomic instability and synthetic lethality following suppression of ATR were not due to accelerated cycling rates in Ras-transformed cells, indicating that these synergistic effects were generated on a per-cell-cycle basis. In contrast to the synthetic lethal effects of hypomorphic ATR suppression, subtle reduction of ATR expression (haploinsufficiency) in combination with endogenous levels of K-ras(G12D) expression elevated the incidence of lung adenocarcinoma, spindle cell sarcoma, and thymic lymphoma in p53 heterozygous mice. K-ras(G12D)-induced tumorigenesis in ATR(+/-)p53(+/-) mice was associated with intrachromosomal deletions and loss of wild-type p53. These findings indicate that synergistic increases in genomic instability following ATR reduction in oncogenic Ras-transformed cells can produce 2 distinct biological outcomes: synthetic lethality upon significant suppression of ATR expression and tumor promotion in the context of ATR haploinsufficiency. These results highlight the importance of the ATR pathway both as a barrier to malignant progression and as a potential target for cancer treatment.
先前的研究表明,致癌应激会激活 ATR-Chk1 通路。在这里,我们表明 ATR-Chk1 通路的激活对于限制致癌性 Ras 转化后基因组不稳定性至关重要。ATR 通路抑制与致癌性 Ras 表达协同作用,可显著增加染色单体断裂、姐妹染色单体交换和 H2AX 磷酸化所量化的基因组不稳定性。这种不稳定性水平明显高于未转化对照细胞中 ATR 抑制所观察到的不稳定性水平。此外,与长期基因组维持缺陷一致,ATR 通路的低功能减少到正常水平的 16%,与培养细胞中的致癌性 Ras 表达具有合成致死性。值得注意的是,ATR 抑制后基因组不稳定性和合成致死性的升高并不是由于 Ras 转化细胞中循环速度的加快,这表明这些协同作用是基于每个细胞周期产生的。与 ATR 低功能抑制的合成致死作用相反,ATR 表达的细微减少(杂合不足)与内源性 K-ras(G12D)表达相结合,提高了 p53 杂合子小鼠中肺腺癌、梭形细胞肉瘤和胸腺瘤的发生率。ATR(+/-)p53(+/-)小鼠中 K-ras(G12D)诱导的肿瘤发生与染色体内缺失和野生型 p53 丢失有关。这些发现表明,ATR 减少在致癌性 Ras 转化细胞中导致的基因组不稳定性协同增加可产生 2 种不同的生物学结果:ATR 表达显著抑制时的合成致死性和 ATR 杂合不足时的肿瘤促进作用。这些结果强调了 ATR 通路作为恶性进展的障碍和癌症治疗的潜在靶点的重要性。