Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan.
J Antibiot (Tokyo). 2011 Jan;64(1):123-32. doi: 10.1038/ja.2010.145. Epub 2010 Nov 24.
FD-594 is an unique pyrano[4',3':6,7]naphtho[1,2-b]xanthene polyketide with a trisaccharide of 2,6-dideoxysugars. In this study, we cloned the FD-594 biosynthetic gene cluster from the producer strain Streptomyces sp. TA-0256 to investigate its biosynthesis. The identified pnx gene cluster was 38143 bp, consisting of 40 open reading frames, including a minimal PKS gene, TDP-olivose biosynthetic genes, two glycosyltransferase genes, two methyltransferase genes and many oxygenase/reductase genes. Most of these enzymes coded in the pnx cluster were reasonably assigned to a plausible biosynthetic pathway for FD-594, in which an unique ring opening process via Baeyer-Villiger-type oxidation catalyzed by a putative flavin adenine dinucleotide (FAD)-dependent monooxygenase, is speculated to lead to the unique xanthene structure. To clarify the involvement of pnx genes in the FD-594 biosynthesis, a glycosyltransferase, PnxGT2, and a methyltransferase, PnxMT2, were characterized enzymatically with the recombinant proteins expressed in Escherichia coli. As a result, PnxGT2 catalyzed the triple olivose transfers to the FD-594 aglycon with TDP-olivose as the glycosyl donor to afford triolivoside. Surprisingly, in the PnxGT2 enzymatic reaction, tetraolivoside and pentaolivoside were significantly detected along with the expected triolivoside. To our knowledge, PnxGT2 is the first contiguous oligosaccharide-forming glycosyltransferase in secondary metabolism. Furthermore, addition of PnxMT2 and S-adenosyl-L-methionine into the PnxGT2 reaction mixture afforded natural FD-594 to confirm that the PnxGT2 reaction product was the expected regiospecifically glycosylated compound. Consequently, the identified pnx gene cluster appears to be involved in FD-594 biosynthesis.
FD-594 是一种独特的吡喃并[4',3':6,7]萘并[1,2-b]蒽酮聚酮化合物,具有 2,6-二去氧糖的三糖。在这项研究中,我们从产生菌株链霉菌 sp. TA-0256 中克隆了 FD-594 生物合成基因簇,以研究其生物合成。鉴定的 pnx 基因簇长 38143 bp,由 40 个开放阅读框组成,包括一个最小的 PKS 基因、TDP-olivose 生物合成基因、两个糖基转移酶基因、两个甲基转移酶基因和许多加氧酶/还原酶基因。该基因簇中编码的大多数酶都被合理地分配到 FD-594 的可能生物合成途径中,其中通过假定的黄素腺嘌呤二核苷酸(FAD)依赖性单加氧酶催化的 Baeyer-Villiger 型氧化,导致独特的呫吨结构。为了阐明 pnx 基因在 FD-594 生物合成中的作用,我们用重组蛋白在大肠杆菌中表达了糖基转移酶 PnxGT2 和甲基转移酶 PnxMT2,并对其进行了酶学表征。结果表明,PnxGT2 以 TDP-olivose 为糖基供体,催化 FD-594 苷元上的三重 olivose 转移,得到三醇 olivoside。令人惊讶的是,在 PnxGT2 的酶促反应中,除了预期的三醇 olivoside 外,还明显检测到四醇 olivoside 和五醇 olivoside。据我们所知,PnxGT2 是次级代谢中第一个连续寡糖形成的糖基转移酶。此外,将 PnxMT2 和 S-腺苷-L-蛋氨酸加入到 PnxGT2 反应混合物中,得到了天然的 FD-594,证实了 PnxGT2 反应产物是预期的区域特异性糖基化化合物。因此,鉴定的 pnx 基因簇似乎参与了 FD-594 的生物合成。