School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138, USA.
Phys Chem Chem Phys. 2011 Jan 7;13(1):34-46. doi: 10.1039/c0cp01514h. Epub 2010 Nov 22.
Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully understanding the activity of gold are considered.
最近,金被强烈研究作为关键合成反应的催化剂。金是一种有吸引力的催化剂,因为令人惊讶的是,它对部分氧化过程具有高度的活性和选择性,这表明它有望实现节能的“绿色”化学。金的高活性的潜在起源是一个有争议的主题,因为通常认为金属金是惰性的。在此,我们确定金催化高活性的一个起源是在金属金的三配位位上结合的原子氧的极其反应性。这是表面上低浓度下 O 的主要形式,这强烈表明它与催化条件最相关。在三配位位上结合的金属 Au 的原子氧具有高活性,可用于 CO 氧化、烯烃氧化以及醇和胺的氧化转化。在确定 Au-O 相互作用中重要的因素中,有表面的形态、氧的局部结合位以及氧覆盖层的有序度。在这篇观点文章中,我们介绍了理论和实验的概述,这些理论和实验确定了活性氧形式及其相关的电荷密度分布和键强度。我们还分析和模拟了由于 O 与表面结合而导致的 Au 原子的释放。这种粗糙表面也有可能发生 O2 解离,如果要使 Au 进行催化活化,这是一个关键步骤。我们进一步表明,在低压力(超高真空)下覆盖 O 的 Au 的产物分布和反应性之间存在强烈的相似性,以及在大气压力下操作的纳米多孔 Au 催化剂之间存在强烈的相似性,这表明在存在金属 Au 的情况下,原子 O 是工作催化条件下的活性物质。我们简要讨论了可能包含完整 O-O 键的氧化剂和 Au 金属氧化物载体界面在 Au 催化中的可能贡献。最后,考虑了全面理解金活性的挑战和未来方向。