Suppr超能文献

基于变换的输入信号的慢特征分析理论及其在复杂细胞中的应用。

A theory of slow feature analysis for transformation-based input signals with an application to complex cells.

机构信息

Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Neural Comput. 2011 Feb;23(2):303-35. doi: 10.1162/NECO_a_00072. Epub 2010 Nov 24.

Abstract

We develop a group-theoretical analysis of slow feature analysis for the case where the input data are generated by applying a set of continuous transformations to static templates. As an application of the theory, we analytically derive nonlinear visual receptive fields and show that their optimal stimuli, as well as the orientation and frequency tuning, are in good agreement with previous simulations of complex cells in primary visual cortex (Berkes and Wiskott, 2005). The theory suggests that side and end stopping can be interpreted as a weak breaking of translation invariance. Direction selectivity is also discussed.

摘要

我们针对输入数据由对静态模板应用一组连续变换生成的情况,发展了慢特征分析的群论分析。作为理论的一个应用,我们解析地推导出非线性视觉感受野,并表明其最优刺激以及方位和频率调谐与初级视觉皮层中复杂细胞的先前模拟结果非常吻合(Berkes 和 Wiskott,2005)。该理论表明,侧抑制和端抑制可以解释为对平移不变性的微弱破坏。我们还讨论了方向选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验