Suppr超能文献

大鼠皮质-边缘结构中单或重复给予脂多糖或葡萄球菌肠毒素 B 后的电活动。

Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B.

机构信息

Swiss Federal Institute of Technology (ETH), Zurich 8092, Switzerland.

出版信息

Proc Biol Sci. 2011 Jun 22;278(1713):1864-72. doi: 10.1098/rspb.2010.2040. Epub 2010 Nov 24.

Abstract

Immune-to-brain communication is essential for an individual to aptly respond to challenging internal and external environments. However, the specificity by which the central nervous system detects or 'senses' peripheral immune challenges is still poorly understood. In contrast to post-mortem c-Fos mapping, we recorded neural activity in vivo in two specific cortico-limbic regions relevant for processing visceral inputs and associating it with other sensory signalling, the amygdala (Am) and the insular cortex (IC). Adult rats were implanted with deep-brain monopolar electrodes and electrical activity was monitored unilaterally before and after administration of two different immunogens, the T-cell-independent antigen lipopolysaccharide (LPS) or the T-cell-dependent antigen staphylococcal enterotoxin B (SEB). In addition, the neural activity of the same individuals was analysed after single as well as repeated antigen administration, the latter inducing attenuation of the immune response. Body temperature and circulating cytokine levels confirmed the biological activity of the antigens and the success of immunization and desensitization protocols. More importantly, the present data demonstrate that neural activity of the Am and IC is not only specific for the type of immune challenge (LPS versus SEB) but seems to be also sensitive to the different immune state (naive versus desensitization). This indicates that the forebrain expresses specific patterns of electrical activity related to the type of peripheral immune activation as well as to the intensity of the stimulation, substantiating associative learning paradigms employing antigens as unconditioned stimuli. Overall, our data support the view of an intensive immune-to-brain communication, which may have evolved to achieve the complex energetic balance necessary for mounting effective immunity and improved individual adaptability by cognitive functions.

摘要

免疫-脑通讯对于个体对外界和内部环境的挑战做出适当反应至关重要。然而,中枢神经系统检测或“感知”外周免疫挑战的特异性仍知之甚少。与死后 c-Fos 映射相反,我们记录了两个与处理内脏输入和将其与其他感觉信号相关的特定皮质-边缘区域(杏仁核和岛叶皮质)的体内神经活动。成年大鼠被植入深部脑单极电极,在给予两种不同免疫原(T 细胞非依赖性抗原脂多糖[LPS]或 T 细胞依赖性抗原葡萄球菌肠毒素 B [SEB])之前和之后,对其单侧的神经活动进行监测。此外,我们还分析了相同个体在单次和重复抗原给药后的神经活动,后者会导致免疫反应减弱。体温和循环细胞因子水平证实了抗原的生物学活性以及免疫和脱敏方案的成功。更重要的是,本数据表明,杏仁核和岛叶皮质的神经活动不仅对免疫挑战的类型(LPS 与 SEB)具有特异性,而且似乎对不同的免疫状态(未致敏与脱敏)也敏感。这表明前脑表达与外周免疫激活类型以及刺激强度相关的特定电活动模式,证实了将抗原作为非条件刺激应用于联想学习范式。总的来说,我们的数据支持免疫-脑通讯密集的观点,这可能是为了实现复杂的能量平衡而进化而来的,这种能量平衡对于产生有效的免疫反应和通过认知功能提高个体适应性是必要的。

相似文献

3
Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B.
J Neuroimmune Pharmacol. 2013 Mar;8(1):42-50. doi: 10.1007/s11481-012-9373-0. Epub 2012 May 27.
6
Role and regulation of IL-12 in the in vivo response to staphylococcal enterotoxin B.
Int Immunol. 1999 Sep;11(9):1403-10. doi: 10.1093/intimm/11.9.1403.
7
Depression of constitutive murine cytochromes P450 by staphylococcal enterotoxin B.
Biochem Pharmacol. 2000 May 15;59(10):1295-303. doi: 10.1016/s0006-2952(00)00250-1.
8
Neurobehavioural activation during peripheral immunosuppression.
Int J Neuropsychopharmacol. 2013 Feb;16(1):137-49. doi: 10.1017/S1461145711001799. Epub 2012 Jan 5.
9
Neural substrates for behaviorally conditioned immunosuppression in the rat.
J Neurosci. 2005 Mar 2;25(9):2330-7. doi: 10.1523/JNEUROSCI.4230-04.2005.

引用本文的文献

1
Investigations on the Ability of the Insular Cortex to Process Peripheral Immunosuppression.
J Neuroimmune Pharmacol. 2024 Jul 30;19(1):40. doi: 10.1007/s11481-024-10143-9.
2
Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease.
Alzheimers Res Ther. 2024 Apr 10;16(1):78. doi: 10.1186/s13195-024-01444-5.
4
Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity.
Psychopharmacology (Berl). 2023 Mar;240(3):647-671. doi: 10.1007/s00213-023-06308-8. Epub 2023 Jan 16.
5
Effects of Peripheral Immune Challenge on In Vivo Firing of Basolateral Amygdala Neurons in Adult Male Rats.
Neuroscience. 2018 Oct 15;390:174-186. doi: 10.1016/j.neuroscience.2018.08.017. Epub 2018 Aug 29.
6
Multisensory body representation in autoimmune diseases.
Sci Rep. 2016 Feb 12;6:21074. doi: 10.1038/srep21074.
7
Learned immunosuppression: extinction, renewal, and the challenge of reconsolidation.
J Neuroimmune Pharmacol. 2013 Mar;8(1):180-8. doi: 10.1007/s11481-012-9388-6. Epub 2012 Jul 13.
8
Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B.
J Neuroimmune Pharmacol. 2013 Mar;8(1):42-50. doi: 10.1007/s11481-012-9373-0. Epub 2012 May 27.
9
Dose-dependent effects of endotoxin on neurobehavioral functions in humans.
PLoS One. 2011;6(12):e28330. doi: 10.1371/journal.pone.0028330. Epub 2011 Dec 2.
10
Brain-immune interactions and the neural basis of disease-avoidant ingestive behaviour.
Philos Trans R Soc Lond B Biol Sci. 2011 Dec 12;366(1583):3389-405. doi: 10.1098/rstb.2011.0061.

本文引用的文献

1
Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases.
J Intern Med. 2010 Jun;267(6):543-60. doi: 10.1111/j.1365-2796.2010.02218.x. Epub 2010 Jan 28.
2
Dual roles for perivascular macrophages in immune-to-brain signaling.
Neuron. 2010 Jan 14;65(1):94-106. doi: 10.1016/j.neuron.2009.11.032.
3
The neurology of the immune system: neural reflexes regulate immunity.
Neuron. 2009 Oct 15;64(1):28-32. doi: 10.1016/j.neuron.2009.09.039.
4
Immune and nervous systems: more than just a superficial similarity?
Immunity. 2009 Nov 20;31(5):705-10. doi: 10.1016/j.immuni.2009.09.009.
5
Endotoxin tolerance: new mechanisms, molecules and clinical significance.
Trends Immunol. 2009 Oct;30(10):475-87. doi: 10.1016/j.it.2009.07.009. Epub 2009 Sep 24.
6
Minimal penetration of lipopolysaccharide across the murine blood-brain barrier.
Brain Behav Immun. 2010 Jan;24(1):102-9. doi: 10.1016/j.bbi.2009.09.001. Epub 2009 Sep 6.
7
The learned immune response: Pavlov and beyond.
Brain Behav Immun. 2010 Feb;24(2):176-85. doi: 10.1016/j.bbi.2009.08.007. Epub 2009 Aug 19.
9
Reflex control of immunity.
Nat Rev Immunol. 2009 Jun;9(6):418-28. doi: 10.1038/nri2566.
10
How (and why) the immune system makes us sleep.
Nat Rev Neurosci. 2009 Mar;10(3):199-210. doi: 10.1038/nrn2576. Epub 2009 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验