Douglas Mental Health University Institute, McGill University, Montréal, Québec H4H 1R3, Canada.
J Neurosci. 2010 Nov 24;30(47):15951-61. doi: 10.1523/JNEUROSCI.3663-10.2010.
Neurons of the medial septum and diagonal band of Broca (MS-DBB) provide an important input to the hippocampus and are critically involved in learning and memory. Although cholinergic and GABAergic MS-DBB neurons are known to modulate hippocampal activity, the role of recently described glutamatergic MS-DBB neurons is unknown. Here, we examined the electrophysiological properties of glutamatergic MS-DBB neurons and tested whether they provide a functional synaptic input to the hippocampus. To visualize the glutamatergic neurons, we used MS-DBB slices from transgenic mice in which the green fluorescent protein is expressed specifically by vesicular glutamate transporter 2-positive neurons and characterized their properties using whole-cell patch-clamp technique. For assessing the function of the glutamatergic projection, we used an in vitro septohippocampal preparation, electrically stimulated the fornix or chemically activated the MS-DBB using NMDA microinfusions and recorded postsynaptic responses in CA3 pyramidal cells. We found that glutamatergic MS-DBB neurons as a population display a highly heterogeneous set of firing patterns including fast-, cluster-, burst-, and slow-firing. Remarkably, a significant proportion exhibited fast-firing properties, prominent I(h), and rhythmic spontaneous firing at theta frequencies similar to those found in GABAergic MS-DBB neurons. Activation of the MS-DBB led to fast, AMPA receptor-mediated glutamatergic responses in CA3 pyramidal cells. These results describe for the first time the electrophysiological signatures of glutamatergic MS-DBB neurons, their rhythmic firing properties, and their capacity to drive hippocampal principal neurons. Our findings suggest that the glutamatergic septohippocampal pathway may play an important role in hippocampal theta oscillations and relevant cognitive functions.
中隔核和 Broca 斜带(MS-DBB)的神经元向海马体提供重要的输入,并在学习和记忆中起着至关重要的作用。尽管已知胆碱能和 GABA 能 MS-DBB 神经元可调节海马体的活动,但最近描述的谷氨酸能 MS-DBB 神经元的作用尚不清楚。在这里,我们研究了谷氨酸能 MS-DBB 神经元的电生理特性,并测试了它们是否向海马体提供功能性突触输入。为了可视化谷氨酸能神经元,我们使用了在转染小鼠中特异性表达绿色荧光蛋白的 MS-DBB 切片,并用全细胞膜片钳技术对其特性进行了表征。为了评估谷氨酸能投射的功能,我们使用了体外隔海马体制备,用电刺激穹窿或用 NMDA 微注射化学激活 MS-DBB,并在 CA3 锥体神经元中记录突触后反应。我们发现,作为一个群体的谷氨酸能 MS-DBB 神经元显示出高度异质的放电模式,包括快速、簇状、爆发和缓慢放电。值得注意的是,相当一部分神经元表现出快速放电特性、显著的 I(h)和类似在 GABA 能 MS-DBB 神经元中发现的θ频率节律性自发放电。MS-DBB 的激活导致 CA3 锥体神经元中快速、AMPA 受体介导的谷氨酸能反应。这些结果首次描述了谷氨酸能 MS-DBB 神经元的电生理特征、它们的节律性放电特性以及它们驱动海马体主要神经元的能力。我们的发现表明,谷氨酸能隔海马体通路可能在海马体θ振荡和相关认知功能中发挥重要作用。