Suppr超能文献

真空辅助核心针活检诊断为导管原位癌的女性中预测浸润性乳腺癌的术前模型的准确性。

Accuracy of a preoperative model for predicting invasive breast cancer in women with ductal carcinoma-in-situ on vacuum-assisted core needle biopsy.

机构信息

University of Sydney, Sydney, NSW, Australia.

出版信息

Ann Surg Oncol. 2011 May;18(5):1364-71. doi: 10.1245/s10434-010-1438-9. Epub 2010 Nov 24.

Abstract

BACKGROUND

Core needle biopsy (CNB) diagnoses of ductal carcinoma-in-situ (DCIS) may represent understaged invasive breast cancer (IBC). We aimed to develop a model that helps identify preoperatively women with IBC after a CNB diagnosis of DCIS.

METHODS

Retrospective study of all women with DCIS on vacuum-assisted CNB of microcalcifications (1999-2008), with prospective classification of imaging variables independently by two radiologists. Variables included lesion size and level of suspicion on imaging, morphology and distribution of microcalcifications, DCIS nuclear grade on CNB, number of cores, and age. Multivariate logistic regression models of the probability of IBC were developed; the accuracy of these models was examined for each radiologist.

RESULTS

Excision histology showed IBC in 77 (17.4%) of 442 subjects with DCIS on CNB. Lesion size on imaging yielded the best model fit and highest accuracy, and had the highest agreement between radiologists. Addition of grade to a model which included size improved model fit (P < 0.0001). However, model fit and accuracy were not improved by inclusion of any other variables. A model based on size and grade had similar areas under the receiver operating characteristic curve (accuracy of 74%) for each radiologist. Modeled sensitivity, specificity, and predictive values for different combinations of size and grade thresholds are reported. If the imaging lesion is >50 mm and the CNB grade is high, the model's positive predictive value is ≥50%.

CONCLUSIONS

A model based on imaging size of microcalcifications and CNB nuclear grade can identify women at high risk of having IBC with moderate accuracy and may be used to guide informed preoperative discussion in women with newly diagnosed DCIS on CNB.

摘要

背景

核心针活检(CNB)诊断的导管原位癌(DCIS)可能代表低估的浸润性乳腺癌(IBC)。我们旨在开发一种模型,帮助识别 CNB 诊断为 DCIS 后术前的 IBC 女性。

方法

回顾性研究所有微钙化真空辅助 CNB 上的 DCIS 女性(1999-2008 年),由两名放射科医生独立前瞻性分类影像学变量。变量包括病变大小和影像学怀疑程度、微钙化形态和分布、CNB 上的 DCIS 核级、核心数量和年龄。开发了 IBC 概率的多变量逻辑回归模型;检查了每个放射科医生的这些模型的准确性。

结果

切除组织学显示 442 例 CNB 上 DCIS 中有 77 例(17.4%)为 IBC。影像学上的病变大小产生了最佳的模型拟合度和最高的准确性,并且在放射科医生之间具有最高的一致性。在包括大小的模型中添加分级可提高模型拟合度(P < 0.0001)。然而,通过包含任何其他变量不能提高模型拟合度和准确性。基于大小和分级的模型对每个放射科医生的接收者操作特征曲线下面积具有相似的准确性(74%)。报告了不同大小和分级阈值组合的模型灵敏度、特异性和预测值。如果影像学病变>50mm,且 CNB 分级较高,则模型的阳性预测值≥50%。

结论

基于微钙化影像学大小和 CNB 核级的模型可以识别出具有中度准确性的高危 IBC 女性,并且可以用于指导新诊断为 CNB 上的 DCIS 的女性进行术前知情讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验