Suppr超能文献

果蝇防御基因的表达进化受到与其他基因表达不同的选择机制的影响。

Expression of defense genes in Drosophila evolves under a different selective regime from expression of other genes.

机构信息

Department of Biology, University of Florida, Gainesville, Florida 32611-8525, USA.

出版信息

Evolution. 2011 Apr;65(4):1068-78. doi: 10.1111/j.1558-5646.2010.01197.x. Epub 2010 Dec 22.

Abstract

Genes involved in host-pathogen interactions are expected to be evolving under complex coevolutionary dynamics, including positive directional and/or frequency-dependent selection. Empirical work has largely focused on the evolution of immune genes at the level of the protein sequence. We examine components of genetic variance for transcript abundance of defense genes in Drosophila melanogaster and D. simulans using a diallel and a round robin breeding design, respectively, and infer modes of evolution from patterns of segregating genetic variation. Defense genes in D. melanogaster are overrepresented relative to nondefense genes among genes with evidence of significant additive variance for expression. Directional selection is expected to deplete additive genetic variance, whereas frequency-dependent selection is expected to maintain additive variance. However, relaxed selection (reduced or no purifying selection) is an alternative interpretation of significant additive variation. Of the three classes of defense genes, the recognition and effector classes show an excess of genes with significant additive variance; whereas signaling genes, in contrast, are overrepresented for dominance variance. Analysis of protein-coding sequences revealed no evidence for an association between additive or dominance variation in expression and directional selection. Both balancing selection driven by host-pathogen coevolution and relaxed selection for expression of uninduced defense genes are viable interpretations of these data.

摘要

参与宿主-病原体相互作用的基因预计将在复杂的协同进化动态下进化,包括正向定向选择和/或频率依赖选择。实证研究主要集中在蛋白质序列水平上免疫基因的进化。我们分别使用双列杂交和轮式杂交设计,检查了黑腹果蝇和拟暗果蝇防御基因转录丰度的遗传方差组成部分,并从分离遗传变异的模式推断进化模式。在表达具有显著加性方差证据的基因中,防御基因相对于非防御基因在数量上过多。定向选择预计会耗尽加性遗传方差,而频率依赖选择预计会维持加性方差。然而,放松选择(减少或没有净化选择)是对显著加性变异的另一种解释。在三类防御基因中,识别和效应类显示出具有显著加性方差的基因过多;而信号基因则相反,在显性方差方面占优势。对蛋白质编码序列的分析没有发现表达的加性或显性变异与定向选择之间存在关联的证据。由宿主-病原体协同进化驱动的平衡选择和对未诱导防御基因表达的放松选择,都是对这些数据的可行解释。

相似文献

1
Expression of defense genes in Drosophila evolves under a different selective regime from expression of other genes.
Evolution. 2011 Apr;65(4):1068-78. doi: 10.1111/j.1558-5646.2010.01197.x. Epub 2010 Dec 22.
2
Balancing Selection Drives the Maintenance of Genetic Variation in Drosophila Antimicrobial Peptides.
Genome Biol Evol. 2019 Sep 1;11(9):2691-2701. doi: 10.1093/gbe/evz191.
4
Dominance genetic variance for traits under directional selection in Drosophila serrata.
Genetics. 2015 May;200(1):371-84. doi: 10.1534/genetics.115.175489. Epub 2015 Mar 16.
5
Common pattern of evolution of gene expression level and protein sequence in Drosophila.
Mol Biol Evol. 2004 Jul;21(7):1308-17. doi: 10.1093/molbev/msh128. Epub 2004 Mar 19.
6
Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila.
Genetics. 1999 Jun;152(2):543-51. doi: 10.1093/genetics/152.2.543.
7
Natural selection drives extremely rapid evolution in antiviral RNAi genes.
Curr Biol. 2006 Mar 21;16(6):580-5. doi: 10.1016/j.cub.2006.01.065.
9
Two rapidly evolving genes contribute to male fitness in Drosophila.
J Mol Evol. 2013 Dec;77(5-6):246-59. doi: 10.1007/s00239-013-9594-8. Epub 2013 Nov 13.

引用本文的文献

3
Gene expression differences underlying genotype-by-genotype specificity in a host-parasite system.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3496-501. doi: 10.1073/pnas.1318628111. Epub 2014 Feb 18.
4
Allelic imbalance in Drosophila hybrid heads: exons, isoforms, and evolution.
Mol Biol Evol. 2012 Jun;29(6):1521-32. doi: 10.1093/molbev/msr318. Epub 2012 Jan 7.
5
Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20449-54. doi: 10.1073/pnas.1113824108. Epub 2011 Dec 5.

本文引用的文献

1
HOST-PARASITE COEVOLUTION: EVIDENCE FOR RARE ADVANTAGE AND TIME-LAGGED SELECTION IN A NATURAL POPULATION.
Evolution. 1998 Aug;52(4):1057-1066. doi: 10.1111/j.1558-5646.1998.tb01833.x.
2
Estimation of the neutrality index.
Mol Biol Evol. 2011 Jan;28(1):63-70. doi: 10.1093/molbev/msq249. Epub 2010 Sep 13.
3
Regulatory divergence in Drosophila revealed by mRNA-seq.
Genome Res. 2010 Jun;20(6):816-25. doi: 10.1101/gr.102491.109. Epub 2010 Mar 30.
4
Quantifying adaptive evolution in the Drosophila immune system.
PLoS Genet. 2009 Oct;5(10):e1000698. doi: 10.1371/journal.pgen.1000698. Epub 2009 Oct 23.
5
Parasite immunomodulation and polymorphisms of the immune system.
J Biol. 2009;8(7):62. doi: 10.1186/jbiol166. Epub 2009 Aug 5.
6
Optimization of gene expression by natural selection.
Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1133-8. doi: 10.1073/pnas.0812009106. Epub 2009 Jan 12.
7
The influence of demography and weak selection on the McDonald-Kreitman test: an empirical study in Drosophila.
Mol Biol Evol. 2009 Mar;26(3):691-8. doi: 10.1093/molbev/msn297. Epub 2009 Jan 6.
8
Immunity in a variable world.
Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):15-26. doi: 10.1098/rstb.2008.0141.
9
Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14471-6. doi: 10.1073/pnas.0805160105. Epub 2008 Sep 12.
10
Natural selection on the Drosophila antimicrobial immune system.
Curr Opin Microbiol. 2008 Jun;11(3):284-9. doi: 10.1016/j.mib.2008.05.001. Epub 2008 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验