Fear Justin M, Arbeitman Michelle N, Salomon Matthew P, Dalton Justin E, Tower John, Nuzhdin Sergey V, McIntyre Lauren M
Department of Molecular Genetics and Microbiology, University of Florida, CGRC Room 116, PO Box 100266, FL 32610-0266, Gainesville, FL, USA.
Biomedical Science, Florida State University, Tallahassee, FL, USA.
BMC Syst Biol. 2015 Sep 4;9:53. doi: 10.1186/s12918-015-0200-0.
The Drosophila sex determination hierarchy is a classic example of a transcriptional regulatory hierarchy, with sex-specific isoforms regulating morphology and behavior. We use a structural equation modeling approach, leveraging natural genetic variation from two studies on Drosophila female head tissues--DSPR collection (596 F1-hybrids from crosses between DSPR sub-populations) and CEGS population (75 F1-hybrids from crosses between DGRP/Winters lines to a reference strain w1118)--to expand understanding of the sex hierarchy gene regulatory network (GRN). This approach is completely generalizable to any natural population, including humans.
We expanded the sex hierarchy GRN adding novel links among genes, including a link from fruitless (fru) to Sex-lethal (Sxl) identified in both populations. This link is further supported by the presence of fru binding sites in the Sxl locus. 754 candidate genes were added to the pathway, including the splicing factors male-specific lethal 2 and Rm62 as downstream targets of Sxl which are well-supported links in males. Independent studies of doublesex and transformer mutants support many additions, including evidence for a link between the sex hierarchy and metabolism, via Insulin-like receptor.
The genes added in the CEGS population were enriched for genes with sex-biased splicing and components of the spliceosome. A common goal of molecular biologists is to expand understanding about regulatory interactions among genes. Using natural alleles we can not only identify novel relationships, but using supervised approaches can order genes into a regulatory hierarchy. Combining these results with independent large effect mutation studies, allows clear candidates for detailed molecular follow-up to emerge.
果蝇性别决定层级是转录调控层级的经典例子,其中性别特异性异构体调控形态和行为。我们采用结构方程建模方法,利用两项关于果蝇雌性头部组织的研究中的自然遗传变异——DSPR 数据集(来自 DSPR 亚群杂交的 596 个 F1 杂种)和 CEGS 群体(来自 DGRP/温特斯品系与参考品系 w1118 杂交的 75 个 F1 杂种),以扩展对性别层级基因调控网络(GRN)的理解。这种方法完全可推广到任何自然群体,包括人类。
我们扩展了性别层级 GRN,增加了基因之间的新联系,包括在两个群体中都鉴定出的从无果基因(fru)到性致死基因(Sxl)的联系。Sxl 基因座中存在 fru 结合位点进一步支持了这种联系。754 个候选基因被添加到该途径中,包括剪接因子雄性特异性致死 2 和 Rm62 作为 Sxl 的下游靶点,这在雄性中是得到充分支持的联系。对双性基因和变异性基因的独立研究支持了许多新增内容,包括通过胰岛素样受体证明性别层级与代谢之间存在联系的证据。
CEGS 群体中添加的基因富含具有性别偏向剪接的基因和剪接体的成分。分子生物学家的一个共同目标是扩展对基因间调控相互作用的理解。利用自然等位基因,我们不仅可以识别新的关系,而且使用监督方法可以将基因排列成一个调控层级。将这些结果与独立的大效应突变研究相结合,使得出现了可进行详细分子后续研究的明确候选基因。