Suppr超能文献

抽象刺激特异性适应模型。

Abstract stimulus-specific adaptation models.

机构信息

School of Psychology and Centre for Robotics and Neural Systems, University of Plymouth, Plymouth PL4 8AA, UK.

出版信息

Neural Comput. 2011 Feb;23(2):435-76. doi: 10.1162/NECO_a_00077. Epub 2010 Nov 29.

Abstract

Many neurons that initially respond to a stimulus stop responding if the stimulus is presented repeatedly but recover their response if a different stimulus is presented. This phenomenon is referred to as stimulus-specific adaptation (SSA). SSA has been investigated extensively using oddball experiments, which measure the responses of a neuron to sequences of stimuli. Neurons that exhibit SSA respond less vigorously to common stimuli, and the metric typically used to quantify this difference is the SSA index (SI). This article presents the first detailed analysis of the SI metric by examining the question: How should a system (e.g., a neuron) respond to stochastic input if it is to maximize the SI of its output? Questions like this one are particularly relevant to those wishing to construct computational models of SSA. If an artificial neural network receives stimulus information at a particular rate and must respond within a fixed time, what is the highest SI one can reasonably expect? We demonstrate that the optimum, average SI is constrained by the information in the input source, the length and encoding of the memory, and the assumptions concerning how the task is decomposed.

摘要

许多神经元最初对刺激做出反应,如果刺激重复出现,它们会停止反应,但如果呈现不同的刺激,它们会恢复反应。这种现象被称为刺激特异性适应(SSA)。使用奇异性实验广泛研究了 SSA,该实验测量了神经元对刺激序列的反应。表现出 SSA 的神经元对常见刺激的反应不那么强烈,通常用于量化这种差异的度量是 SSA 指数(SI)。本文通过考察以下问题,对 SI 度量进行了首次详细分析:如果系统(例如神经元)要使其输出的 SI 最大化,它应该如何响应随机输入?像这样的问题对于那些希望构建 SSA 计算模型的人特别相关。如果人工神经网络以特定速率接收刺激信息,并且必须在固定时间内做出响应,那么人们可以合理地期望获得的最高 SI 是多少?我们证明,最优、平均 SI 受到输入源中的信息、记忆的长度和编码以及关于任务如何分解的假设的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验