Institute of Pathology, University of Ulm, Ulm, Germany.
J Microsc. 2011 Apr;242(1):1-9. doi: 10.1111/j.1365-2818.2010.03452.x. Epub 2010 Nov 18.
Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods.
计算机密集型方法可被定义为涉及大量高度重复计算的数据分析程序。我们提到了带替换的重抽样方法(自举方法)、不带替换的重抽样方法(随机化检验)和模拟方法。这些重抽样方法基于简单而稳健的原理,在很大程度上不受分布假设的限制。自举方法可用于计算标量模型参数和重复平面点模式的摘要统计量的置信区间,以及用于进行显著性检验。对于一些简单的平面点过程模型,点模式可以通过基本的蒙特卡罗方法进行模拟。对于具有更复杂交互特性的模型的模拟通常需要更先进的计算方法。在这方面,我们提到了使用 Metropolis-Hastings 算法的基于马尔可夫链蒙特卡罗方法的 Gibbs 过程模拟。基于参数模型的模拟的替代方法是随机重建方法。方法的基本思想简要回顾,并通过简单的实例来说明,以鼓励该领域的新手使用计算机密集型方法。