Suppr超能文献

多阶段高通量细胞连续发酵以提高生产力和滴度。

Multi-stage high cell continuous fermentation for high productivity and titer.

机构信息

Department of Chemical and Biomolecular Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea.

出版信息

Bioprocess Biosyst Eng. 2011 May;34(4):419-31. doi: 10.1007/s00449-010-0485-8. Epub 2010 Dec 3.

Abstract

We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.

摘要

我们进行了首次多阶段连续高密度细胞培养 (MSC-HCDC) 模拟,以证明 MSC-HCDC 可以使用已发表的乳酸、青霉素和乙醇发酵动力学达到批次/补料分批产物滴度,其生产力比补料分批生产力高得多。所考虑的系统由 n 个串联的连续搅拌釜式反应器 (CSTR) 组成,这些 CSTR 可以使用中空纤维细胞回收或细胞固定化进行高密度细胞培养。在每个 CSTR 中,都可以进行基质供应和产物去除。青霉素的生产受到葡萄糖代谢物抑制的严重限制,这需要多 CSTR 葡萄糖补料。8 阶段 C-HCDC 乳酸发酵产生了 212.9 g/L 的滴度和 10.6 g/L/h 的生产力,分别相当于可比乳酸补料分批的 101%和 429%。青霉素生产模型预测,在 40 g/L 细胞密度的 8 阶段 C-HCDC 中,生产力为 149%(0.085 g/L/h),在 60 g/L 细胞密度的 7 阶段 C-HCDC 中,生产力为 289%(0.165 g/L/h),与参考批次培养相比。2 阶段 C-HCDC 乙醇实验运行显示,在具有 88.8 g/L 滴度和 3.7 g/L/h 生产力的批次系统中,产物的滴度和生产力分别提高了 107%和 257%。MSC-HCDC 可以提供比批次/补料分批系统更高的生产力,并且也可以提高几个百分点的滴度。MSC-HCDC 相对于批次/补料分批系统的生产力比为 MSC-HCDC 的系统稀释率与批次/补料分批系统的循环时间的乘积。我们建议将 MSC-HCDC 作为各种发酵产物(包括单克隆抗体)的新生产平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验