Suppr超能文献

基于知识的儿童首次给药剂量指导方法。

Knowledge-driven approaches for the guidance of first-in-children dosing.

作者信息

Edginton Andrea N

机构信息

School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.

出版信息

Paediatr Anaesth. 2011 Mar;21(3):206-13. doi: 10.1111/j.1460-9592.2010.03473.x. Epub 2010 Dec 3.

Abstract

Pediatric pharmacokinetic and pediatric safety and efficacy studies are, in most cases, a mandatory activity during the drug development process in North America and Europe. Pharmacokinetic modeling in anticipation of the pediatric clinical trial should take a data or knowledge-driven approach by employing either top-down or bottom-up approaches to assessing differential age-related dosing. These two approaches depend on different starting information and are likely to be used in conjunction with each other for the purposes of defining pediatric dosing guidelines. This review primarily focuses on the available bottom-up, mechanistic models for predicting age-dependent drug absorption, distribution and elimination, and their integration through the whole-body physiologically based pharmacokinetic (PBPK) model. The bottom-up approach incorporating adult and pediatric whole-body PBPK models for optimizing age-related dosing is detailed for a drug currently undergoing pediatric development.

摘要

在北美和欧洲,儿科药代动力学以及儿科安全性和有效性研究在大多数情况下是药物研发过程中的一项强制性活动。在进行儿科临床试验之前,药代动力学建模应采用数据驱动或知识驱动的方法,通过自上而下或自下而上的方法来评估与年龄相关的剂量差异。这两种方法依赖于不同的起始信息,并且可能会相互结合使用,以确定儿科给药指南。本综述主要关注现有的自下而上的、基于机制的模型,这些模型用于预测年龄依赖性药物吸收、分布和消除,并通过全身生理药代动力学(PBPK)模型进行整合。结合成人和儿科全身PBPK模型以优化与年龄相关的给药剂量的自下而上方法,针对一种目前正在进行儿科研发的药物进行了详细阐述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验