Farhy Leon S, McCall Anthony L
Department of Medicine, Center for Biomathematical Technology, University of Virginia, Charlottesville, Virginia 22908, USA.
J Diabetes Sci Technol. 2010 Nov 1;4(6):1345-56. doi: 10.1177/193229681000400608.
This review analyzes an interdisciplinary approach to the pancreatic endocrine network-like relationships that control glucagon secretion and glucagon counterregulation (GCR). Using in silico studies, we show that a pancreatic feedback network that brings together several explicit interactions between islet peptides and blood glucose reproduces the normal GCR axis and explains its impairment in diabetes. An α-cell auto-feedback loop drives glucagon pulsatility and mediates triggering of GCR by hypoglycemia by a rapid switch-off of β-cell signals. The auto-feedback explains the enhancement of defective GCR in β-cell deficiency by a switch-off of signals in the pancreas that suppress α cells. Our models also predict that reduced β-cell activity decreases and delays the GCR. A key application of our models is the in silico simulation and testing of possible scenarios to repair defective GCR in β-cell deficiency. In particular, we predict that partial suppression of hyperglucagonemia may repair the impaired GCR. We also outline how the models can be extended and tested using human data to become a part of a larger construct including the regulation of the hepatic glucose output by the pancreas, circulating glucose, and incretins. In conclusion, a model of the normal GCR control mechanisms and their dysregulation in insulin-deficient diabetes is proposed and partially validated. The model components are clinically measurable, which permits its application to the study of the abnormalities of the human endocrine pancreas and their role in the progression of many diseases, including diabetes, metabolic syndrome, polycystic ovary syndrome, and others. It may also be used to examine therapeutic responses.
本综述分析了一种跨学科方法,用于研究控制胰高血糖素分泌和胰高血糖素反调节(GCR)的胰腺内分泌网络样关系。通过计算机模拟研究,我们发现一个胰腺反馈网络,该网络整合了胰岛肽与血糖之间的几种明确相互作用,可重现正常的GCR轴并解释其在糖尿病中的受损情况。一个α细胞自身反馈回路驱动胰高血糖素的脉动性,并通过快速关闭β细胞信号来介导低血糖对GCR的触发。这种自身反馈解释了在β细胞缺乏时,胰腺中抑制α细胞的信号关闭如何导致有缺陷的GCR增强。我们的模型还预测,β细胞活性降低会使GCR降低并延迟其发生。我们模型的一个关键应用是对β细胞缺乏时修复有缺陷的GCR的可能情况进行计算机模拟和测试。特别是,我们预测部分抑制高胰高血糖素血症可能修复受损的GCR。我们还概述了如何使用人类数据扩展和测试这些模型,使其成为一个更大结构的一部分,包括胰腺对肝葡萄糖输出、循环葡萄糖和肠促胰岛素的调节。总之,我们提出并部分验证了正常GCR控制机制及其在胰岛素缺乏型糖尿病中失调的模型。该模型的组成部分在临床上是可测量的,这使得它可应用于研究人类内分泌胰腺的异常情况及其在包括糖尿病、代谢综合征、多囊卵巢综合征等多种疾病进展中的作用。它也可用于检查治疗反应。