Suppr超能文献

抑制胰高血糖素分泌。

Inhibition of glucagon secretion.

作者信息

Young Andrew

机构信息

Amylin Pharmaceuticals, Inc., San Diego, California, USA.

出版信息

Adv Pharmacol. 2005;52:151-71. doi: 10.1016/S1054-3589(05)52008-8.

Abstract

This chapter describes a physiological and profound effect of amylin to inhibit meal-related glucagon secretion. Glucagon is processed from a large precursor, proglucagon, in a tissue-specific manner in pancreatic alpha-cells. In addition to amino acid nutrient stimuli, glucagon is also secreted in response to stressful stimuli, such as hypoglycemia and hypovolemia. Glucagon primarily acts on liver to initiate glycogenolysis and gluconeogenesis, resulting in a rapid increase in endogenous production of glucose. With longer stimulation, glucagon action at the liver results in a glucose-sparing activation of free fatty acid oxidation and production of ketones. During hypoglycemia, glucagon secretion is clearly a protective feed-back, defending the organism against damaging effects of low glucose in brain and nerves (neuroglycopenia). Amino acid-stimulated glucagon secretion during meals has a different purpose: amino acids stimulate insulin secretion, which mobilizes amino acid transporters and effects their storage in peripheral tissues. At the same time, insulin obligatorily recruits GLUT4 glucose transporters in muscle and fat. The hypoglycemic potential of such GLUT4 mobilization is averted only by the simultaneous liberation of endogenous glucose in response to feedforward (anticipatory) glucagon secretion. The effect of amylin and its agonists to inhibit amino acid-stimulated glucagon secretion is both potent (EC50 = 18 pM) and profound (approximately 70% inhibition). This glucagonostatic action appears to be extrinsic to the pancreatic islet, occurring in intact animals and in patients, but not in isolated islets or isolated perfused pancreas preparations. On the other hand, the effect of hypoglycemia to stimulate glucagon secretion, which is intrinsic to the islet and occurs in isolated preparations, is not affected by amylin or its agonists. The physiological interpretation of these actions fits with the general concept, illustrated in Fig. 1, that amylin and insulin secreted in response to meals shut down endogenous production as a source of glucose, in favor of that derived from the meal. Amylin and insulin secreted in response to nutrients already absorbed act as a feedback switch for glucose sourcing. The insulinotropic (incretin) gut peptides, GLP-1 and GIP, secreted in response to yet-to-be-absorbed intraluminal nutrients, amplify beta-cell secretion and thereby activate the glucose sourcing switch in a feedforward manner. Hypoglycemia-stimulated glucagon secretion and nutrient (amino acid)-stimulated glucagon secretion are two clearly different processes, differently affected by amylin. The balance of glucose fluxes is disturbed in diabetic states, partly as a result of inappropriate glucagon secretion. Although glucose production due to glucagon secreted in response to hypoglycemia is normal or even reduced in diabetic patients, the secretion of glucagon (and production of endogenous glucose) in response to protein meals is typically exaggerated. Absence of appropriate beta-cell suppression of alpha-cell secretion has been invoked as a mechanism that explains exaggerated glucagon responses, especially prevalent in patients with deficient beta-cell secretion (type 1 diabetes and insulinopenic type 2 diabetes). A proposed benefit of insulin replacement therapy is the reduction of absolute or relative hyperglucagonemia. High glucagon is said to be necessary for ketosis in severe forms of diabetes. A further benefit of reversing hyperglucagonemia is reduction of the excessive endogenous glucose production that contributes to fasting and postprandial hyperglycemia in diabetes. The idea that amylin is a part of the beta-cell drive that normally limits glucagon secretion after meals fits with the observation that glucagon secretion is exaggerated in amylin-deficient states (diabetes characterized by beta-cell failure). This proposal is further supported by the observation that postprandial glucagon suppression is restored following amylin replacement therapy in such states. These observations argue for a therapeutic case for amylin replacement in patients in whom excess glucagon action contributes to fasting and postprandial hyperglycemia and ketosis. The selectivity of amylin's glucagonostatic effect (wherein it is restricted to meal-related glucagon secretion, while preserving glucagon secretion and glucagon action during hypoglycemia) may confer additional benefits; the patient population amenable to amylin replacement therapy is likely to also be receiving insulin replacement therapy, and is thereby susceptible to insulin-induced hypoglycemia. Most explorations of the biology of amylin have used the endogenous hormone in the cognate species (typically rat amylin in rat studies). Clinical studies have typically employed the amylinomimetic agent pramlintide. Studies of amylinomimetic effects on glucagon secretion include effects of rat amylin in anesthetized non-diabetic rats (Jodka et al., 2000; Parkes et al., 1999; Young et al., 1995), effects of rat amylin in isolated perfused rat pancreas (Silvestre et al., 1999), effects of pramlintide in anesthetized non-diabetic rats (Gedulin et al., 1997b,c,d, 1998), effects of pramlintide in patients with type l diabetes (Fineman et al., 1997a,b,c,d, 1998a; Holst, 1997; Nyholm et al., 1996, 1997a,b,c; Orskov et al., 1999; Thompson and Kolterman, 1997), and effects in patients with type 2 diabetes (Fineman et al., 1998b). In addition, effects of amylin antagonists have been observed in isolated preparations (Silvestre et al., 1996), and effects of antagonists or neutralizing antibody have been determined in whole-animal preparations (Gedulin et al., 1997a,e,f).

摘要

本章描述了胰淀素抑制进餐相关胰高血糖素分泌的一种生理且显著的作用。胰高血糖素由一种大的前体——胰高血糖素原,在胰腺α细胞中以组织特异性方式加工而成。除了氨基酸营养刺激外,胰高血糖素也会在应激刺激下分泌,如低血糖和低血容量。胰高血糖素主要作用于肝脏,启动糖原分解和糖异生,导致内源性葡萄糖生成迅速增加。随着刺激时间延长,胰高血糖素在肝脏的作用会导致游离脂肪酸氧化的葡萄糖节约激活和酮体生成。在低血糖期间,胰高血糖素分泌显然是一种保护性反馈,保护机体免受大脑和神经中低葡萄糖的损害作用(神经低血糖症)。进餐期间氨基酸刺激的胰高血糖素分泌有不同目的:氨基酸刺激胰岛素分泌,胰岛素调动氨基酸转运体并使其在周围组织中储存。同时,胰岛素必然会募集肌肉和脂肪中的GLUT4葡萄糖转运体。只有通过对前馈(预期性)胰高血糖素分泌作出反应,同时释放内源性葡萄糖,才能避免这种GLUT4调动带来的低血糖潜力。胰淀素及其激动剂抑制氨基酸刺激的胰高血糖素分泌的作用既强大(EC50 = 18 pM)又显著(约70%抑制)。这种胰高血糖素稳态作用似乎并非胰腺胰岛固有的,在完整动物和患者中会出现,但在分离的胰岛或分离的灌注胰腺制剂中则不会。另一方面,低血糖刺激胰高血糖素分泌的作用是胰岛固有的,且在分离制剂中会出现,不受胰淀素或其激动剂影响。这些作用的生理学解释符合图1所示的一般概念,即进餐时分泌的胰淀素和胰岛素会关闭内源性葡萄糖生成,转而利用来自食物的葡萄糖。对已吸收营养作出反应而分泌的胰淀素和胰岛素充当葡萄糖来源的反馈开关。对尚未吸收的腔内营养作出反应而分泌的促胰岛素(肠促胰岛素)肠道肽GLP - 1和GIP,以前馈方式放大β细胞分泌,从而激活葡萄糖来源开关。低血糖刺激的胰高血糖素分泌和营养(氨基酸)刺激的胰高血糖素分泌是两个明显不同的过程,受胰淀素的影响也不同。在糖尿病状态下,葡萄糖通量平衡会受到干扰,部分原因是胰高血糖素分泌不当。尽管糖尿病患者因低血糖分泌的胰高血糖素导致的葡萄糖生成正常甚至减少,但对蛋白质餐的胰高血糖素分泌(以及内源性葡萄糖生成)通常会过度。缺乏β细胞对α细胞分泌的适当抑制被认为是解释胰高血糖素反应过度的一种机制,在β细胞分泌不足的患者(1型糖尿病和胰岛素缺乏型2型糖尿病)中尤为普遍。胰岛素替代疗法的一个潜在益处是降低绝对或相对高胰高血糖素血症。据说在严重糖尿病形式中,高胰高血糖素血症是酮症所必需的。逆转高胰高血糖素血症的另一个益处是减少过多内源性葡萄糖生成,而过多的内源性葡萄糖生成会导致糖尿病患者的空腹和餐后高血糖。胰淀素是β细胞驱动的一部分,通常在进餐后限制胰高血糖素分泌,这一观点与胰淀素缺乏状态(以β细胞功能衰竭为特征的糖尿病)中胰高血糖素分泌过度的观察结果相符。在这种状态下,胰淀素替代疗法后餐后胰高血糖素抑制恢复,这一观察结果进一步支持了这一观点。这些观察结果支持了对胰高血糖素作用过度导致空腹和餐后高血糖及酮症的患者进行胰淀素替代治疗的观点。胰淀素胰高血糖素稳态作用的选择性(即它仅限于进餐相关的胰高血糖素分泌,同时在低血糖期间保留胰高血糖素分泌和胰高血糖素作用)可能带来额外益处;适合接受胰淀素替代治疗的患者群体可能也在接受胰岛素替代治疗,因此容易发生胰岛素诱导的低血糖。大多数对胰淀素生物学的研究都使用了同源物种中的内源性激素(在大鼠研究中通常是大鼠胰淀素)。临床研究通常使用胰淀素模拟剂普兰林肽。对胰淀素模拟剂对胰高血糖素分泌影响的研究包括大鼠胰淀素对麻醉的非糖尿病大鼠的影响(约德卡等人,2000年;帕克斯等人,1999年;杨等人,1995年)、大鼠胰淀素对分离灌注的大鼠胰腺的影响(西尔维斯特等人*,*1999年)、普兰林肽对麻醉的非糖尿病大鼠的影响(格杜林等人,*1997b、c、d、*1998年)、普兰林肽对1型糖尿病患者的影响(芬曼等人,*1997a、b、c、d、*1998a;霍尔斯特,1997年;尼霍姆等人,1996年、1997a、b、c;奥斯科夫等人,1999年;汤普森和科尔特曼,1997年)以及对2型糖尿病患者的影响(芬曼等人,1998b)。此外,在分离制剂中观察到了胰淀素拮抗剂的作用(西尔维斯特等人,1996年),并在全动物制剂中确定了拮抗剂或中和抗体的作用(格杜林等人,1997a、e、f)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验