Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
J Environ Manage. 2011 Mar;92(3):910-8. doi: 10.1016/j.jenvman.2010.10.049. Epub 2010 Dec 3.
A Bayesian-updating approach is presented to the estimation of total uncertainty-based Margin of Safety (MOS) for Total Maximum Daily Load (TMDL) calculations. Probability distributions are presented to construct the likelihood function, the prior probability distribution, and the posterior (total uncertainty) probability distribution. The Bayesian-updating approach is demonstrated through a case study for the Lower Amite River, Louisiana. The posterior probability distribution-based on the Bayesian approach updates the standard deviation of summer dissolved oxygen in the Amite River from 1.88 mg/L to 2.10 mg/L when the total uncertainty is considered. Results from the Bayesian-updating approach are compared with two conventional methods. The dissolved oxygen reserve based on a conventional margin of safety of 20% is estimated to be 45,682.26 kg/Day. The second conventional method, where we consider the standard deviation of 1.88 mg/L, produces a dissolved oxygen reserve of 40,516.09 kg/Day. The Bayesian approach yields the dissolved oxygen reserve of 38,614.43 kg/Day with the first level (μ-σ) of MOS, producing a deficit of 5606.65 kg/Day in dissolved oxygen. The dissolved oxygen reserve deficit increases to 23,895.13 kg/Day when the second level (μ-2σ) of MOS is used, which escalated to 42,383.52 kg/Day when the highest level (μ-3σ) of MOS is used. While the total uncertainty-based Bayesian approach is demonstrated for a TMDL development on the Amite River, the overall approach could be applied in any river system with similar available data.
提出了一种贝叶斯更新方法来估计基于总不确定性的安全裕度 (MOS) 用于总最大日负荷 (TMDL) 计算。概率分布用于构建似然函数、先验概率分布和后验(总不确定性)概率分布。通过路易斯安那州下阿米特河的案例研究演示了贝叶斯更新方法。基于贝叶斯方法的后验概率分布更新了阿米特河夏季溶解氧的标准偏差,当考虑总不确定性时,从 1.88 mg/L 增加到 2.10 mg/L。贝叶斯更新方法的结果与两种传统方法进行了比较。基于传统 20%安全裕度的溶解氧储备估计为 45682.26 kg/天。第二种传统方法,我们考虑 1.88 mg/L 的标准偏差,产生的溶解氧储备为 40516.09 kg/天。贝叶斯方法产生的溶解氧储备为 38614.43 kg/天,第一级 (μ-σ) MOS 产生 5606.65 kg/天的溶解氧亏缺。当使用 MOS 的第二级 (μ-2σ) 时,溶解氧储备亏缺增加到 23895.13 kg/天,当使用 MOS 的最高级 (μ-3σ) 时,增加到 42383.52 kg/天。虽然基于总不确定性的贝叶斯方法已用于阿米特河的 TMDL 开发,但总体方法可应用于具有类似可用数据的任何河流系统。