Suppr超能文献

通过对变异性的分层贝叶斯分析来改善水质评估。

Improving water quality assessments through a hierarchical Bayesian analysis of variability.

机构信息

NOAA, Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan 48108, USA.

出版信息

Environ Sci Technol. 2010 Oct 15;44(20):7858-64. doi: 10.1021/es100657p.

Abstract

Water quality measurement error and variability, while well-documented in laboratory-scale studies, is rarely acknowledged or explicitly resolved in most model-based water body assessments, including those conducted in compliance with the United States Environmental Protection Agency (USEPA) Total Maximum Daily Load (TMDL) program. Consequently, proposed pollutant loading reductions in TMDLs and similar water quality management programs may be biased, resulting in either slower-than-expected rates of water quality restoration and designated use reinstatement or, in some cases, overly conservative management decisions. To address this problem, we present a hierarchical Bayesian approach for relating actual in situ or model-predicted pollutant concentrations to multiple sampling and analysis procedures, each with distinct sources of variability. We apply this method to recently approved TMDLs to investigate whether appropriate accounting for measurement error and variability will lead to different management decisions. We find that required pollutant loading reductions may in fact vary depending not only on how measurement variability is addressed but also on which water quality analysis procedure is used to assess standard compliance. As a general strategy, our Bayesian approach to quantifying variability may represent an alternative to the common practice of addressing all forms of uncertainty through an arbitrary margin of safety (MOS).

摘要

水质测量误差和变异性在实验室规模的研究中已有充分记录,但在大多数基于模型的水体评估中,包括那些为符合美国环境保护署(USEPA)的总最大日负荷(TMDL)计划而进行的评估中,很少被承认或明确解决。因此,TMDL 和类似的水质管理计划中提出的污染物负荷削减可能存在偏差,导致水质恢复和指定用途恢复的速度慢于预期,或者在某些情况下,管理决策过于保守。为了解决这个问题,我们提出了一种分层贝叶斯方法,将实际原位或模型预测的污染物浓度与多种具有不同变异性来源的采样和分析程序联系起来。我们将这种方法应用于最近批准的 TMDL 中,以调查是否适当考虑测量误差和变异性会导致不同的管理决策。我们发现,所需的污染物负荷削减实际上可能会有所不同,这不仅取决于如何处理测量变异性,还取决于用于评估标准合规性的水质分析程序。作为一种一般策略,我们的贝叶斯方法来量化变异性可能代表了一种替代方法,可以替代通过任意安全裕度(MOS)来处理所有形式不确定性的常见做法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验