Suppr超能文献

运动皮层对到达自适应控制的贡献取决于扰动方案。

Contributions of the motor cortex to adaptive control of reaching depend on the perturbation schedule.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Cereb Cortex. 2011 Jul;21(7):1475-84. doi: 10.1093/cercor/bhq192. Epub 2010 Dec 3.

Abstract

During adaptation, motor commands tend to repeat as performance plateaus. It has been hypothesized that this repetition produces plasticity in the motor cortex (M1). Here, we considered a force field reaching paradigm, varied the perturbation schedule to potentially alter the amount of repetition, and quantified the interaction between disruption of M1 using transcranial magnetic stimulation (TMS) and the schedule of perturbations. In the abrupt condition (introduction of the perturbation on a single trial followed by constant perturbation), motor output adapted rapidly and was then followed by significant repetition as performance plateaued. TMS of M1 had no effect on the rapid adaptation phase but reduced adaptation at the plateau. In the intermediate condition (introduction of the perturbation over 45 trials), disruption of M1 had no effect on the phase in which motor output changed but again impaired adaptation when performance had plateaued. Finally, when the perturbation was imposed gradually (over 240 trials), the motor commands continuously changed during adaptation and never repeated, and disruption of M1 had no effect on performance. Therefore, TMS of M1 appeared to reduce adaptation of motor commands during a specific phase of learning: when motor commands tended to repeat.

摘要

在适应过程中,运动指令往往会随着表现趋于平稳而重复。人们假设这种重复会使运动皮层(M1)产生可塑性。在这里,我们考虑了一种力场到达范式,改变了干扰计划,以潜在地改变重复的数量,并量化了使用经颅磁刺激(TMS)干扰 M1 与干扰计划之间的相互作用。在突然条件下(在单个试验中引入干扰,然后持续干扰),运动输出迅速适应,然后随着表现趋于平稳而出现显著的重复。M1 的 TMS 对快速适应阶段没有影响,但在高原阶段减少了适应。在中间条件下(在 45 次试验中引入干扰),M1 的干扰对运动输出改变的阶段没有影响,但当表现达到高原时,再次损害了适应。最后,当干扰逐渐施加(超过 240 次试验)时,运动指令在适应过程中不断变化,从不重复,而 M1 的干扰对性能没有影响。因此,M1 的 TMS 似乎减少了运动指令在学习特定阶段的适应:当运动指令倾向于重复时。

相似文献

1
Contributions of the motor cortex to adaptive control of reaching depend on the perturbation schedule.
Cereb Cortex. 2011 Jul;21(7):1475-84. doi: 10.1093/cercor/bhq192. Epub 2010 Dec 3.
2
Changes in corticospinal excitability during reach adaptation in force fields.
J Neurophysiol. 2013 Jan;109(1):124-36. doi: 10.1152/jn.00785.2012. Epub 2012 Oct 3.
3
Disruption of M1 Activity during Performance Plateau Impairs Consolidation of Motor Memories.
J Neurosci. 2017 Sep 20;37(38):9197-9206. doi: 10.1523/JNEUROSCI.3916-16.2017. Epub 2017 Aug 18.
4
Primary motor cortex involvement in initial learning during visuomotor adaptation.
Neuropsychologia. 2012 Aug;50(10):2515-23. doi: 10.1016/j.neuropsychologia.2012.06.024. Epub 2012 Jul 7.
6
Enhanced action performance following TMS manipulation of associative plasticity in ventral premotor-motor pathway.
Neuroimage. 2018 Dec;183:847-858. doi: 10.1016/j.neuroimage.2018.09.002. Epub 2018 Sep 4.
7
Limited Contribution of Primary Motor Cortex in Eye-Hand Coordination: A TMS Study.
J Neurosci. 2017 Oct 4;37(40):9730-9740. doi: 10.1523/JNEUROSCI.0564-17.2017. Epub 2017 Sep 11.
8
Disruption of Locomotor Adaptation with Repetitive Transcranial Magnetic Stimulation Over the Motor Cortex.
Cereb Cortex. 2015 Jul;25(7):1981-6. doi: 10.1093/cercor/bhu015. Epub 2014 Feb 13.
9
Anodal motor cortex stimulation paired with movement repetition increases anterograde interference but not savings.
Eur J Neurosci. 2014 Oct;40(8):3243-52. doi: 10.1111/ejn.12699. Epub 2014 Aug 27.

引用本文的文献

1
Effect of Extrinsic Reward on Motor Plasticity during Skill Learning.
eNeuro. 2025 Apr 10;12(4). doi: 10.1523/ENEURO.0410-24.2025. Print 2025 Apr.
2
A neural implementation model of feedback-based motor learning.
Nat Commun. 2025 Feb 20;16(1):1805. doi: 10.1038/s41467-024-54738-5.
3
Home cage-based insights into motor learning and strategy adaptation in a Huntington disease mouse model.
PLoS One. 2025 Feb 13;20(2):e0318663. doi: 10.1371/journal.pone.0318663. eCollection 2025.
4
Probing sensorimotor memory through the human speech-audiomotor system.
J Neurophysiol. 2025 Feb 1;133(2):479-489. doi: 10.1152/jn.00337.2024. Epub 2024 Dec 31.
5
Motor practice related changes in the sensorimotor cortices of youth with cerebral palsy.
Brain Commun. 2024 Sep 26;6(5):fcae332. doi: 10.1093/braincomms/fcae332. eCollection 2024.
6
The Consolidation of Newly Learned Movements Depends upon the Somatosensory Cortex in Humans.
J Neurosci. 2024 Aug 7;44(32):e0629242024. doi: 10.1523/JNEUROSCI.0629-24.2024.
8
The human somatosensory cortex contributes to the encoding of newly learned movements.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2316294121. doi: 10.1073/pnas.2316294121. Epub 2024 Jan 29.
9
Memory consolidation of sequence learning and dynamic adaptation during wakefulness.
Cereb Cortex. 2024 Jan 31;34(2). doi: 10.1093/cercor/bhad507.
10
Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement.
J Neurosci. 2023 Oct 25;43(43):7130-7148. doi: 10.1523/JNEUROSCI.0428-23.2023. Epub 2023 Sep 12.

本文引用的文献

1
Combined adaptiveness of specific motor cortical ensembles underlies learning.
J Neurosci. 2010 Apr 14;30(15):5415-25. doi: 10.1523/JNEUROSCI.0076-10.2010.
2
Use-dependent and error-based learning of motor behaviors.
J Neurosci. 2010 Apr 14;30(15):5159-66. doi: 10.1523/JNEUROSCI.5406-09.2010.
3
Multiple motor learning strategies in visuomotor rotation.
PLoS One. 2010 Feb 24;5(2):e9399. doi: 10.1371/journal.pone.0009399.
4
Size of error affects cerebellar contributions to motor learning.
J Neurophysiol. 2010 Apr;103(4):2275-84. doi: 10.1152/jn.00822.2009. Epub 2010 Feb 17.
5
Rapid formation and selective stabilization of synapses for enduring motor memories.
Nature. 2009 Dec 17;462(7275):915-9. doi: 10.1038/nature08389. Epub 2009 Nov 29.
6
Stably maintained dendritic spines are associated with lifelong memories.
Nature. 2009 Dec 17;462(7275):920-4. doi: 10.1038/nature08577. Epub 2009 Nov 29.
7
Cerebellar contributions to adaptive control of saccades in humans.
J Neurosci. 2009 Oct 14;29(41):12930-9. doi: 10.1523/JNEUROSCI.3115-09.2009.
8
Persistence of motor memories reflects statistics of the learning event.
J Neurophysiol. 2009 Aug;102(2):931-40. doi: 10.1152/jn.00237.2009. Epub 2009 Jun 3.
9
Brain polarization enhances the formation and retention of motor memories.
J Neurophysiol. 2009 Jul;102(1):294-301. doi: 10.1152/jn.00184.2009. Epub 2009 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验