Suppr超能文献

金黄色葡萄球菌 ClpC 通过 sae 和 codY 对新菌株 Newman 中的荚膜进行调控,但在 UAMS-1 菌株和修复了 saeS 的 Newman 菌株中通过 codY 激活荚膜。

Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS.

机构信息

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA.

出版信息

J Bacteriol. 2011 Feb;193(3):686-94. doi: 10.1128/JB.00987-10. Epub 2010 Dec 3.

Abstract

ClpC is an ATPase chaperone found in most Gram-positive low-GC bacteria. It has been recently reported that ClpC affected virulence gene expression in Staphylococcus aureus. Here we report that ClpC regulates transcription of the cap operon and accumulation of capsule, a major virulence factor for S. aureus. As virulence genes are regulated by a complex regulatory network in S. aureus, we have used capsule as a model to understand this regulation. By microarray analyses of strain Newman, we found that ClpC strongly activates transcription of the sae operon, whose products are known to negatively regulate capsule synthesis in this strain. Further studies indicated that ClpC repressed capsule production by activating the sae operon in strain Newman. Interestingly, the clpC gene cloned into a multiple-copy plasmid vector exhibited an activation phenotype, suggesting that ClpC overexpression has a net positive effect. In the absence of sae function, by either deletion or correction of a native mutation within saeS, we found that ClpC had a positive effect on capsule production. Indeed, in the UAMS-1 strain, which does not have the saeS mutation, ClpC functioned as an activator of capsule production. Our microarray analyses of strain Newman also revealed that CodY, a repressor of capsule production, was repressed by ClpC. Using genetic approaches, we showed that CodY functioned downstream of ClpC, leading to capsule activation both in Newman and in UAMS-1. Thus, ClpC functions in two opposite pathways in capsule regulation in strain Newman but functions as a positive activator in strain UAMS-1.

摘要

ClpC 是一种在大多数革兰氏阳性低 GC 细菌中发现的 ATP 酶伴侣。最近有报道称,ClpC 影响金黄色葡萄球菌的毒力基因表达。在这里,我们报告 ClpC 调节 cap 操纵子的转录和荚膜的积累,荚膜是金黄色葡萄球菌的主要毒力因子。由于毒力基因在金黄色葡萄球菌中受到复杂的调控网络的调控,我们使用荚膜作为模型来理解这种调控。通过对 Newman 菌株的微阵列分析,我们发现 ClpC 强烈激活了 sae 操纵子的转录,其产物已知在该菌株中负调控荚膜合成。进一步的研究表明,ClpC 通过激活 Newman 菌株中的 sae 操纵子来抑制荚膜的产生。有趣的是,克隆到多拷贝质粒载体中的 clpC 基因表现出激活表型,表明 ClpC 过表达具有净正效应。在 sae 功能缺失的情况下,无论是通过缺失 saeS 中的基因,还是纠正其天然突变,我们发现 ClpC 对荚膜的产生有积极的影响。事实上,在没有 saeS 突变的 UAMS-1 菌株中,ClpC 作为荚膜产生的激活因子发挥作用。我们对 Newman 菌株的微阵列分析还表明,CodY 是荚膜产生的抑制剂,它被 ClpC 抑制。通过遗传方法,我们表明 CodY 作用于 ClpC 的下游,导致 Newman 和 UAMS-1 中荚膜的激活。因此,ClpC 在 Newman 菌株的荚膜调控中发挥两种相反的作用途径,但在 UAMS-1 菌株中作为正向激活因子发挥作用。

相似文献

2
Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus.
J Bacteriol. 2018 Mar 26;200(8). doi: 10.1128/JB.00012-18. Print 2018 Apr 15.
3
MsaB and CodY Interact To Regulate Staphylococcus aureus Capsule in a Nutrient-Dependent Manner.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00294-18. Print 2018 Sep 1.
4
Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone.
J Bacteriol. 2013 Oct;195(19):4506-16. doi: 10.1128/JB.00758-13. Epub 2013 Aug 2.
5
MgrA activates expression of capsule genes, but not the α-toxin gene in experimental Staphylococcus aureus endocarditis.
J Infect Dis. 2013 Dec 1;208(11):1841-8. doi: 10.1093/infdis/jit367. Epub 2013 Jul 30.
6
Repression of Capsule Production by XdrA and CodY in Staphylococcus aureus.
J Bacteriol. 2018 Aug 24;200(18). doi: 10.1128/JB.00203-18. Print 2018 Sep 15.
7
CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression.
J Bacteriol. 2009 May;191(9):2953-63. doi: 10.1128/JB.01492-08. Epub 2009 Feb 27.
8
The mcsB gene of the clpC operon is required for stress tolerance and virulence in Staphylococcus aureus.
Microbiology (Reading). 2012 Oct;158(Pt 10):2568-2576. doi: 10.1099/mic.0.060749-0. Epub 2012 Aug 17.
9
RbsR Activates Capsule but Represses the rbsUDK Operon in Staphylococcus aureus.
J Bacteriol. 2015 Dec;197(23):3666-75. doi: 10.1128/JB.00640-15. Epub 2015 Sep 8.
10
CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals.
J Bacteriol. 2014 Mar;196(6):1184-96. doi: 10.1128/JB.00128-13. Epub 2014 Jan 3.

引用本文的文献

1
Treatment of with environmentally relevant concentrations of triclosan activates SaeRS-dependent virulence factor expression.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0172824. doi: 10.1128/aac.01728-24. Epub 2025 Jun 18.
2
WalK(S221P) Mutation Promotes the Production of Capsules Through an MgrA-Dependent Pathway.
Microorganisms. 2025 Feb 25;13(3):502. doi: 10.3390/microorganisms13030502.
4
Cervimycin-Resistant Staphylococcus aureus Strains Display Vancomycin-Intermediate Resistant Phenotypes.
Microbiol Spectr. 2022 Oct 26;10(5):e0256722. doi: 10.1128/spectrum.02567-22. Epub 2022 Sep 29.
5
Regulation of Staphylococcal Capsule by SarZ is SigA-Dependent.
J Bacteriol. 2022 Aug 16;204(8):e0015222. doi: 10.1128/jb.00152-22. Epub 2022 Jul 11.
6
Fatty acids can inhibit Staphylococcus aureus SaeS activity at the membrane independent of alterations in respiration.
Mol Microbiol. 2021 Nov;116(5):1378-1391. doi: 10.1111/mmi.14830. Epub 2021 Oct 30.
8
MgrA Activates Staphylococcal Capsule via SigA-Dependent Promoter.
J Bacteriol. 2020 Dec 18;203(2). doi: 10.1128/JB.00495-20.
9
Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence.
EMBO Rep. 2020 May 6;21(5):e45832. doi: 10.15252/embr.201845832. Epub 2020 Mar 23.

本文引用的文献

2
Direct targets of CodY in Staphylococcus aureus.
J Bacteriol. 2010 Jun;192(11):2861-77. doi: 10.1128/JB.00220-10. Epub 2010 Apr 2.
4
Tricarboxylic acid cycle-dependent synthesis of Staphylococcus aureus Type 5 and 8 capsular polysaccharides.
J Bacteriol. 2010 Mar;192(5):1459-62. doi: 10.1128/JB.01377-09. Epub 2010 Jan 8.
5
Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus.
J Bacteriol. 2010 Mar;192(5):1416-22. doi: 10.1128/JB.00233-09. Epub 2009 Dec 28.
6
Differential target gene activation by the Staphylococcus aureus two-component system saeRS.
J Bacteriol. 2010 Feb;192(3):613-23. doi: 10.1128/JB.01242-09. Epub 2009 Nov 20.
7
Senescence of staphylococci: using functional genomics to unravel the roles of ClpC ATPase during late stationary phase.
Int J Med Microbiol. 2010 Feb;300(2-3):130-6. doi: 10.1016/j.ijmm.2009.10.004. Epub 2009 Nov 20.
9
Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC.
J Bacteriol. 2009 Oct;191(20):6363-73. doi: 10.1128/JB.00913-09. Epub 2009 Aug 14.
10
Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.
Nat Rev Microbiol. 2009 Aug;7(8):589-99. doi: 10.1038/nrmicro2185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验