University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Am J Sports Med. 2011 Feb;39(2):272-8. doi: 10.1177/0363546510383479. Epub 2010 Dec 4.
High tunnel placement is common in single- and double-bundle anterior cruciate ligament (ACL) reconstructions. Similar nonanatomic tunnel placement may also occur in ACL augmentation surgery.
In this study, in situ forces and knee kinematics were compared between nonanatomic high anteromedial (AM) and anatomic AM augmentation in a knee with isolated AM bundle injury.
Controlled laboratory study.
Seven fresh-frozen cadaver knees were used (age, 48 ± 12.5 years). First, intact knee kinematics was tested with a robotic-universal force sensor testing system under 2 loading conditions. An 89-N anterior load was applied, and an anterior tibial translation was measured at knee flexion angles of 0°, 30°, 60°, and 90°. Then, combined rotatory loads of 7-N·m valgus and 5-N·m internal tibial rotation were applied at 15° and 30° of knee flexion angles, which mimic the pivot shift. Afterward, only the AM bundle of the ACL was cut arthroscopically, keeping the posterolateral bundle intact. The knee was again tested using the intact knee kinematics to measure the in situ force of the AM bundle. Then, arthroscopic anatomic AM bundle reconstruction was performed with an allograft, and the knee was tested to give the in situ force of the reconstructed AM bundle. Knee kinematics under the 3 conditions (intact, anatomic AM augmentation, and nonanatomic high AM augmentation) and the in situ force were compared and analyzed.
The high AM graft had significantly lower in situ force than the intact and anatomic reconstructed AM bundle at 0° of knee flexion (P < .05) and the intact AM bundle at 30° of knee flexion under anterior tibial loading. There were no differences between anatomic graft and intact AM bundle. The high AM graft also had a significantly lower in situ force than the intact and anatomic reconstructed AM with simulated pivot-shift loading at 15° and 30° of flexion (P < .05). Under anterior tibial and rotatory loading, there was a difference in tibial displacement between anatomic and high AM reconstructions and between the high AM graft and intact ACL under rotational loading with the knee at 15° of flexion.
Anatomic AM augmentation can lead to biomechanical advantages at time zero when compared with the nonanatomic (high AM) augmentation. Anatomic AM augmentation better restores the knee kinematics to the intact ACL state.
高隧道位置在单束和双束前交叉韧带(ACL)重建中很常见。类似的非解剖学隧道位置也可能发生在 ACL 增强手术中。
在本研究中,比较了 ACL 单独前内侧束(AM)损伤膝关节中解剖学高位 AM 增强和非解剖学高位 AM 增强的原位力和膝关节运动学。
对照实验室研究。
使用 7 个新鲜冷冻尸体膝关节(年龄,48±12.5 岁)。首先,在 2 种加载条件下使用机器人-通用力传感器测试系统测试完整膝关节运动学。施加 89-N 的前向负荷,并在膝关节屈曲 0°、30°、60°和 90°时测量前胫骨平移。然后,在膝关节屈曲 15°和 30°时施加 7-N·m 外翻和 5-N·m 内旋的组合旋转负荷,模拟枢轴转移。此后,仅关节镜下切断 ACL 的 AM 束,保留后外侧束完整。再次使用完整膝关节运动学测试测量 AM 束的原位力。然后,用同种异体移植物进行关节镜解剖 AM 束重建,并测试膝关节以获得重建 AM 束的原位力。比较和分析 3 种情况下(完整、解剖 AM 增强和非解剖学高位 AM 增强)的膝关节运动学和原位力。
在膝关节屈曲 0°时,高位 AM 移植物的原位力明显低于完整和解剖重建 AM 束(P<0.05),在膝关节前向加载时,也明显低于完整 AM 束在膝关节屈曲 30°时。解剖移植物和完整 AM 束之间没有差异。在模拟枢轴转移加载下,在膝关节屈曲 15°和 30°时,高位 AM 移植物的原位力也明显低于完整和解剖重建 AM(P<0.05)。在前胫骨和旋转负荷下,在膝关节屈曲 15°时,解剖和高位 AM 重建之间以及高位 AM 移植物和完整 ACL 之间的胫骨位移存在差异,在膝关节旋转负荷下。
与非解剖学(高位 AM)增强相比,解剖学 AM 增强在零时间点可产生生物力学优势。解剖学 AM 增强更好地将膝关节运动学恢复到完整 ACL 状态。