Suppr超能文献

比较预测青少年活动强度的加速度计切点。

Comparison of accelerometer cut points for predicting activity intensity in youth.

机构信息

Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Med Sci Sports Exerc. 2011 Jul;43(7):1360-8. doi: 10.1249/MSS.0b013e318206476e.

Abstract

UNLABELLED

The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents.

PURPOSE

This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard.

METHODS

A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and V˙O2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC).

RESULTS

Across all four intensity levels, the EV (κ=0.68) and FT (κ=0.66) cut points exhibited significantly better agreement than TR (κ=0.62), MT (κ=0.54), and PU (κ=0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate- to vigorous-intensity physical activity (ROC-AUC=0.90) than TR, PU, or MT cut points (ROC-AUC=0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC=0.90).

CONCLUSIONS

On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in sedentary, light-, moderate-, and vigorous-intensity activity in children and adolescents.

摘要

未进行比较有效性研究,使得研究人员无法就儿童和青少年应用与强度相关的加速度计切点达成共识。

目的

本研究旨在评估五套独立开发的 ActiGraph 切点的分类准确性,以能量消耗(通过间接量热法测量)作为标准参考。

方法

206 名年龄在 5 至 15 岁的参与者完成了 12 项标准化活动试验。试验包括静坐活动(躺下、书写、电脑游戏)、生活方式活动(扫地、洗衣、投掷和接球、有氧运动、篮球)和散步活动(舒适步行、快走、快走跑步机步行、跑步)。在每次试验中,参与者均佩戴 ActiGraph GT1M,使用 Oxycon Mobile 便携式代谢系统逐口气测量 V˙O2。使用五套独立开发的切点(Freedson/Trost [FT]、Puyau [PU]、Treuth [TR]、Mattocks [MT] 和 Evenson [EV])估计身体活动强度。通过加权 κ 统计和接收器操作特征曲线(ROC-AUC)下面积评估分类准确性。

结果

在所有四个强度水平下,EV(κ=0.68)和 FT(κ=0.66)切点的一致性显著优于 TR(κ=0.62)、MT(κ=0.54)和 PU(κ=0.36)。EV 和 FT 切点在中高强度身体活动中的分类准确性显著优于 TR、PU 或 MT 切点(ROC-AUC=0.77-0.85)(ROC-AUC=0.90)。只有 EV 切点为所有四个身体活动强度水平提供了可接受的分类准确性,并且在所有年龄段的儿童中表现良好。广泛应用的 100 计数/分钟的静坐切点具有极好的分类准确性(ROC-AUC=0.90)。

结论

基于这些发现,我们建议研究人员使用 EV ActiGraph 切点来估计儿童和青少年久坐、低强度、中强度和高强度活动所花费的时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验