Max Planck Institute for Marine Microbiology, Bremen, Germany.
Environ Microbiol. 2011 Mar;13(3):758-74. doi: 10.1111/j.1462-2920.2010.02380.x. Epub 2010 Dec 6.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
硫化氢的氧化对于海洋生境中的硫循环至关重要。然而,除了丝状、形成垫状的细菌外,微生物硫氧化在海洋沉积物中的作用以及涉及的微生物在很大程度上仍是未知的。在这项研究中,我们使用 16S rRNA 和功能基因序列分析、荧光原位杂交(FISH)和显微放射自显影技术,探索了硫化物潮间带沉积物中硫氧化原核生物(SOP)的多样性、丰度和活性。16S rRNA 基因分析表明,未培养的γ变形菌门的独特分支是潮汐沉积物中重要的 SOP。这一结果得到了克隆文库中编码反向异化亚硫酸盐还原酶(rDSR)和腺苷磷酸硫酸盐还原酶(APR)的基因的γ变形菌序列优势的支持。所有三个基因的大量序列与未培养的自养 SOP 聚在一起。因此,正如显微放射自显影所示,γ变形菌在表层沉积物中占所有 ¹⁴CO₂ 掺入细胞的 40-70%。此外,所有三个基因的系统发育分析都一致表明存在一个与硫氧化内共生体密切相关的离散 SOP 种群,这些内共生体是管蠕虫 Oligobrachia spp. 的内共生体。FISH 显示,该种群(WS-Gam209 组)丰度很高,达到 1.3×10⁸ 个细胞 ml⁻¹(占所有细胞的 4.6%)。该种群中有大约 25%的细胞掺入了 CO₂,这与基于硫氧化的化学自养代谢相一致。因此,我们假设附着在沉积物颗粒上的新型γ变形菌 SOP 可能比以前认为的更能去除硫化物并促进海洋沉积物中的初级生产。