Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Av. Sos Baynat s/n, 12080 Castellón, Spain.
Biochem Biophys Res Commun. 2011 Jan 7;404(1):330-4. doi: 10.1016/j.bbrc.2010.11.118. Epub 2010 Dec 4.
Measurement of unitary conductance is a fundamental step in the characterization of a protein ion channel permeabilizing a membrane. We study here the effect of salts of divalent cations on the OmpF channel conductance with a particular emphasis in dissecting the role of the electrolyte itself, the role of the counterion accumulation induced by the protein channel charges and other effects not found in salts of monovalent cations. We show that current saturation and blocking are not exclusive properties of narrow (single-file) ion channels but may be observed in large, multiionic channels like bacterial porins. Single-channel conductance measurements performed over a wide range of salt concentrations (up to 3 M) combined with continuum electrodiffusion calculations demonstrate that current saturation cannot be simply ascribed to ion interaction with protein channel residues.
测量电导是研究蛋白质离子通道透过细胞膜的基本步骤。本文特别研究了二价阳离子盐对 OmpF 通道电导的影响,以剖析电解质本身的作用、蛋白质通道电荷引起的反离子积累的作用以及在单价阳离子盐中未发现的其他作用。我们表明,电流饱和和阻断并非仅存在于狭窄(单分子线)离子通道中,而可能在细菌孔道等大型多离子通道中观察到。在很宽的盐浓度范围内(高达 3 M)进行的单通道电导测量与连续电扩散计算相结合,表明电流饱和不能简单归因于离子与蛋白质通道残基的相互作用。