Neonatal Unit, Hospital Universitari Sant Joan de Déu, Barcelona, Spain.
Neonatology. 2011;99(4):295-301. doi: 10.1159/000320153. Epub 2010 Dec 4.
There is a need for a better etiologic classification of preterm births and for tools to help to determine the possible etiologies of these births.
Having previously developed the Barcelona Etiology of Prematurity (BEP) algorithm, based on a new classification for preterm births, we sought to validate this algorithm in clinical studies whereby doctors retrospectively assigned the etiology of preterm birth according to principal cause and associated causes.
In phase 1 of the study, 91 preterm neonates consecutively admitted to a tertiary hospital were etiologically classified by doctors using the BEP algorithm. In phase 2, another 29 cases, representing the full spectrum of standard clinical scenarios, were classified by 20 doctors randomly divided into two groups of 10: one group used the algorithm and the other did not.
In phase 1, the doctors were able to assign the etiology of all 91 clinical cases using the BEP algorithm, showing a 95.6% level of agreement with the etiologies set by the authors. In phase 2, for the 572 total evaluations, the group that used the BEP algorithm had significantly fewer errors in assigning the principal cause of prematurity than the group that did not use the algorithm (4.51 vs. 16.20%, respectively; p < 0.0001), and also demonstrated a higher level of correlation in assigning the associated causes.
The proposed classification may be used to retrospectively categorize the etiology of preterm births, and the BEP algorithm facilitates this task enabling greater accuracy and precision in clinical data.
需要一种更好的早产病因分类方法,以及帮助确定这些早产可能病因的工具。
我们先前基于一种新的早产分类方法开发了巴塞罗那早产病因(BEP)算法,旨在通过医生根据主要病因和相关病因进行回顾性早产病因分类的临床研究来验证该算法。
在研究的第 1 阶段,91 例连续入住一家三级医院的早产儿由医生使用 BEP 算法进行病因分类。在第 2 阶段,另 29 例代表了标准临床情况的全貌,由 20 名医生随机分为两组(每组 10 名)进行分类:一组使用算法,另一组不使用。
在第 1 阶段,医生能够使用 BEP 算法对所有 91 例临床病例进行病因分类,与作者设定的病因具有 95.6%的一致性。在第 2 阶段,对于 572 次总评估,使用 BEP 算法的组在分配早产主要病因方面的错误明显少于未使用算法的组(分别为 4.51%和 16.20%;p < 0.0001),并且在分配相关病因方面也具有更高的相关性。
所提出的分类方法可用于回顾性分类早产的病因,BEP 算法可辅助该任务,使临床数据的准确性和精确性更高。