Institute for Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Phys Chem Chem Phys. 2011 Jan 28;13(4):1606-17. doi: 10.1039/c0cp01134g. Epub 2010 Dec 7.
Temperature dependent luminescence experiments are combined with femtosecond time-resolved transient absorption spectroscopy to decipher the photoinduced excited-state relaxation pathway in mononuclear Fe, Ru and Os terpyridine complexes bearing a conjugated chromophore within the ligand framework. The herein presented complexes constitute a class of coordination compounds, which overcome the poor emission properties commonly observed for most terpyridine transition metal complexes. As reported earlier, the complexes reveal dual emission at room temperature stemming from ligand centered and metal-to-ligand charge-transfer states. The molecular mechanism of the room temperature dual luminescence is addressed experimentally in this contribution. The experimental results indicate an ultrafast branching reaction within the excited-state manifold upon photoexcitation of the ligand-centered S(1) state. This branching occurs from a "hot" excited state geometry close to the Franck-Condon point of absorption and within ∼100 fs, i.e. the temporal resolution of our experimental setup. The combination of ultrafast differential absorption experiments and temperature-dependent luminescence data allows not only to draw conclusions about the molecular mechanism underlying the observed dual emission but also to construct quantitative Jablonski diagrams and, thereby, to detail the excited-state topology determining the remarkable luminescence properties of the systems at hand.
将温度依赖的发光实验与飞秒时间分辨瞬态吸收光谱相结合,以解析在单核 Fe、Ru 和 Os 金属卟啉配合物中配体框架内带有共轭发色团的光致激发态弛豫途径。本文介绍的配合物构成了一类配位化合物,克服了大多数金属卟啉过渡金属配合物中常见的发射性能差的问题。如前所述,这些配合物在室温下显示出源于配体中心和金属-配体电荷转移态的双重发射。本研究从实验上研究了室温下双荧光的分子机制。实验结果表明,在配体中心 S1 态的光激发下,在激发态中存在超快分支反应。这种分支发生在接近吸收的 Franck-Condon 点的“热”激发态几何形状中,并且在 100 fs 内,即我们实验设置的时间分辨率。超快差分吸收实验和温度依赖的发光数据的结合不仅可以得出关于观察到的双重发射的分子机制的结论,还可以构建定量的 Jablonski 图,并详细描述决定所研究体系显著发光性能的激发态拓扑结构。