Suppr超能文献

共振拉曼光谱电化学照亮光致分子反应途径。

Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways.

机构信息

Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745 Jena, Germany.

Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstrasse 8, 07743 Jena, Germany.

出版信息

Molecules. 2019 Jan 10;24(2):245. doi: 10.3390/molecules24020245.

Abstract

Electron transfer reactions play a key role for artificial solar energy conversion, however, the underlying reaction mechanisms and the interplay with the molecular structure are still poorly understood due to the complexity of the reaction pathways and ultrafast timescales. In order to investigate such light-induced reaction pathways, a new spectroscopic tool has been applied, which combines UV-vis and resonance Raman spectroscopy at multiple excitation wavelengths with electrochemistry in a thin-layer electrochemical cell to study [Ru(tbtpy)₂] (tbtpy = tri--butyl-2,2':6',2''-terpyridine) as a model compound for the photo-activated electron donor in structurally related molecular and supramolecular assemblies. The new spectroscopic method substantiates previous suggestions regarding the reduction mechanism of this complex by localizing photo-electrons and identifying structural changes of metastable intermediates along the reaction cascade. This has been realized by monitoring selective enhancement of Raman-active vibrations associated with structural changes upon electronic absorption when tuning the excitation wavelength into new UV-vis absorption bands of intermediate structures. Additional interpretation of shifts in Raman band positions upon reduction with the help of quantum chemical calculations provides a consistent picture of the sequential reduction of the individual terpyridine ligands, i.e., the first reduction results in the monocation [(tbtpy)Ru(tbtpy)]⁺, while the second reduction generates [(tbtpy)Ru(tbtpy)] of triplet multiplicity. Therefore, the combination of this versatile spectro-electrochemical tool allows us to deepen the fundamental understanding of light-induced charge transfer processes in more relevant and complex systems.

摘要

电子转移反应在人工太阳能转换中起着关键作用,然而,由于反应途径的复杂性和超快时间尺度,其潜在的反应机制和与分子结构的相互作用仍未得到很好的理解。为了研究这种光诱导的反应途径,应用了一种新的光谱工具,该工具将紫外-可见和共振拉曼光谱在多个激发波长与电化学结合在一个薄层电化学电池中,以研究[Ru(tbtpy)₂](tbtpy = 三--丁基-2,2':6',2''-三联吡啶)作为结构相关分子和超分子组装中光激活电子供体的模型化合物。这种新的光谱方法证实了以前关于该配合物还原机制的建议,通过定位光电子并识别反应级联过程中亚稳态中间体的结构变化来实现。这是通过监测当将激发波长调谐到中间结构的新紫外可见吸收带时,与结构变化相关的拉曼活性振动的选择性增强来实现的。借助量子化学计算,对还原时拉曼带位置偏移的附加解释提供了各三联吡啶配体顺序还原的一致图景,即第一个还原导致单阳离子[(tbtpy)Ru(tbtpy)]⁺,而第二个还原生成三重态多重性的[(tbtpy)Ru(tbtpy)]。因此,这种多功能的光电化学工具的组合使我们能够更深入地理解更相关和复杂的系统中的光诱导电荷转移过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f7c/6358810/550de331a3bb/molecules-24-00245-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验