Suppr超能文献

研究微生物燃料电池之间流体连通的影响。

Investigating the effects of fluidic connection between microbial fuel cells.

机构信息

Bristol Robotics Laboratory, University of the West of England, Bristol Business Park, Coldharbour Lane, Bristol, UK.

出版信息

Bioprocess Biosyst Eng. 2011 May;34(4):477-84. doi: 10.1007/s00449-010-0491-x. Epub 2010 Dec 7.

Abstract

Microbial fuel cells (MFCs) can 'treat' wastewater but individually are thermodynamically restricted. Scale-up might, therefore, require a plurality of units operating in a stack which could introduce losses simply through fluidic connections. Experiments were performed on two hydraulically joined MFCs (20 cm apart) where feedstock flowed first through the upstream unit (MFC(up)) and into the downstream unit (MFC(down)) to explore the interactive effect of electrical load connection, influent make-up and flow-rate on electrical outputs. This set-up was also used to investigate how calculating total internal resistance based on a dynamic open circuit voltage (OCV) might differ from using the starting OCV. When fed a highly conductive feedstock (~4,800 μS) MFC(down) dropped approximately 180 mV as progressively heavier loads were applied to MFC(up) (independent of flow-rate) due to electron leakages through the medium. The conductivities of plain acetate solutions (5 and 20 mM) were insufficient to induce losses in MFC(down) even when MFC(up) was operating at high current densities. However, at the highest flow-rate (240 mL/h) MFC(down) dropped by approximately 100 mV when using 5 and 220 mV using 20 mM acetate. When the distance between MFCs was reduced by 5 cm, voltage drops were apparent even at lower flow-rates, (30 mL/h decreased the voltage by 115 mV when using 20 mM acetate). Shear flow-rates can introduce dissolved oxygen and turbulence all capable of affecting the anodic biofilm and redox conditions. Calculating total internal resistance using a dynamic OCV produced a more stable curve over time compared to that based on the starting constant OCV.

摘要

微生物燃料电池 (MFC) 可以“处理”废水,但在热力学上受到限制。因此,扩大规模可能需要多个单元在堆栈中运行,这可能会仅仅通过流体连接而引入损耗。实验在两个水力连接的 MFC 上进行(相距 20 厘米),其中进料首先流过上游单元(MFC(up))并进入下游单元(MFC(down)),以探索电负载连接、进水组成和流速对电输出的交互影响。该装置还用于研究基于动态开路电压 (OCV) 计算总内阻与使用初始 OCV 有何不同。当进料为高导电性进料(~4800 μS)时,由于电子通过介质泄漏,当逐渐增加施加到 MFC(up) 的负载(与流速无关)时,MFC(down) 下降约 180 mV。纯乙酸盐溶液(5 和 20 mM)的电导率不足以在 MFC(up) 以高电流密度运行时导致 MFC(down) 损耗。然而,在最高流速(240 mL/h)下,即使使用 5 和 220 mV 的 20 mM 乙酸盐,MFC(down) 也会下降约 100 mV。当 MFC 之间的距离缩短 5 厘米时,即使在较低的流速下(当使用 20 mM 乙酸盐时,30 mL/h 的流速使电压降低 115 mV),电压下降也很明显。切向流速可以引入溶解氧和湍流,所有这些都可能影响阳极生物膜和氧化还原条件。与基于初始恒定 OCV 的方法相比,使用动态 OCV 计算总内阻会产生更稳定的曲线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验